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Abstract

We present a method for numerically solving the Schrödinger equation of an anti-
hydrogen atom in a laser field. This method involves discrete variable representation
(DVR), quintic spline approximation of the radial part of the wavefunction, and Gaus-
sian quadrature on the angular and radial variables. We include a description of the
computer program that was created to perform calculations of transition probabilities,
and present data from simple test case in which the atom is initially in the 3s state.
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1 Introduction

Since this is a senior thesis, written mainly for myself, the audience is assumed to be
students at my own current level who have already taken a course on quantum mechanics but
who have not necessarily dealt with numerical solution of the time dependent Schrödinger
equation. Even with such an audience, the results of this research are new and of interest
to professional physicists. Experimentalists are trying to explore the nature of antimatter
by examining antihydrogen, the first and only antimatter atom that has been created so far.
Our results should help shed a little light on the topic so that they are not wandering about
in the dark. It should give them useful information in their pursuit of methods to prepare
antihydrogen atoms for the spectroscopic experiments that will help reveal the nature of
antimatter.

The creativity and labor of the research originates with Dr. Chi-Yu Hu, my advisor,
and David Caballero, her graduate student. They have selected the mathematical and
computational techniques described in this paper and have written the computer code to
calculate the results. I have only created this expository paper, run the code, and included
the results of the research within. The final results of their research will be communicated
to the professional physics community once they themselves write a paper.

A number of appendices are included at the end of this paper to aid the reader (and the
author) in comprehending various aspects of this paper. Since the reader is likely to be rela-
tively new to the topic of quantum mechanics, Appendix A covers derivation of the solutions
for the ordinary hydrogen-in-free-space problem. These solutions are very important to our
antihydrogen problem, assuming that nature provides the expected symmetry that would
give the hydrogen and antihydrogen systems identical behavior. Appendix B gives explicit
equations for the functions which are used in the spline approximation of the antihydrogen
wavefunction. Finally, Appendix C provides a short description of the basics of antimatter
for those unfamiliar with its relation to matter. Now, let’s get to the problem in question.

1.1 Physical Situation

Imagine, if you will, that we have an antihydrogen atom free in space that is excited at
some quantum state with a principal quantum number1 n≈ 50. In actuality, experimental
physicists create antihydrogen atoms in the strong electromagnetic fields that are used to
trap antiprotons and positrons, so they are not free, but we theorists will assume for now
that our atom is essentially free. The atom remains in its excited state until we turn on
a laser beam designated to be linearly polarized along the z-axis. Then the atom remains
in a laser field of particular frequency νL and intensity I for some length of time. This is,
theoretically, our physical situation.

1.2 Objective

What we would like to do is calculate the probabilities of excitation and de-excitation
(including ionization) of the atom due to the laser beam as time goes on, given various
particular combinations of frequency and intensity of the beam. We are especially interested

1See Appendix A for the derivation of the principal quantum number n and the corresponding states.
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in de-excitation because experimental physicists would like to know how to bring their anti-
hydrogen atoms (which have n≈50) to lower energy, or “cooler,” states. That would allow
them to perform spectroscopic experiments with the atoms that could help reveal the nature
of antimatter. We will be looking specifically at the probabilities of the antihydrogen atom
occupying states of particular principal and angular quantum numbers, that is, particular
Rnl states.

1.3 Procedure

We calculate the wavepacket as a function of time using a program written by David
Caballero in the C programming language. From this wavefunction, the probabilities of
ionization and transition to particular bound antihydrogen states can be calculated. To
explain this procedure in a cogent manner, this paper is organized into three main sections.
“Mathematical Work” presents the mathematics and technique leading up to the program,
“Computational Work” provides a description of the program and the resulting data, and
“Conclusions” presents the physical implications of the data.
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2 Mathematical Work

First, in “Analytical Approach,” we examine the progress we can make analytically to-
wards the solution. However, it is a very rare circumstance that one can solve a quantum
mechanical problem analytically, such as in the case of the quantum simple harmonic oscil-
lator or the free hydrogen atom. So, once we reach a point where we can push the analysis
no further, we take a discrete variable approach to find a method for computing an approx-
imate solution. We find in “Discrete Variable Approach” that it is useful to work in both
momentum- and coordinate-space representations and that using a quadrature technique on
the angular coordinates and a spline technique on the radial coordinates is to our advantage.

2.1 Analytical Approach

To achieve our goal of calculating probabilities of excitation and de-excitation to partic-
ular states, we need to solve the time-dependent Schrödinger equation for the wavefunction
Ψ(r, t) of the atom2. Given our knowledge of the initial state Ψ(r, 0), we should be able to
discover how the wavefunction evolves over time as a wavepacket of states, with the most ap-
propriate basis being the free-hydrogen bound states ψnlm, with negative energy, and ionized
continuum states3 ψE, with positive energy. With respect to this basis,

Ψ(r, t) =
∑
nlm

Anlm(t)ψnlm(r) +

∫ ∞

0

AE(t)ψE(r) dE, (2.1)

where Anlm and AE are the complex probability amplitudes of the packet components and
the triple sum over n, l, and m is expressed compactly using only one summation symbol.
The continuum states are infinitely degenerate, meaning there are infinitely many continuum
states with the same energy levels, so the unbound component of Ψ is much more complicated
than the integral in Equation 2.1 suggests. Since we do not know how to characterize the
continuum states, we will not try to extract information about energy from these states. On
the other hand, the value of n determines the energy En associated with the bound state
ψnlm, so we have access to the probability of the atom taking on bound states with particular
values of n. For each value of n, there are n2 states with different l and m values, so we
should consider each of them in our calculation. Using Equation 2.1 and the orthonormality
of the bound states, the probability Pn(t) that the antihydrogen atom will be in a state with
energy En at time t is

Pn(t) =

∣∣∣∣∣
〈∑

lm

ψnlm(r)

∣∣∣∣∣Ψ(r, t)

〉∣∣∣∣∣
2

=

∣∣∣∣∣∑
lm

〈ψnlm(r)|Ψ(r, t)〉

∣∣∣∣∣
2

=

∣∣∣∣∣∑
lm

〈
ψnlm(r)

∣∣∣∣∣∑
n′l′m′

An′l′m′(t)ψn′l′m′(r)

〉∣∣∣∣∣
2

2As we do in Appendix A with the hydrogen atom, we use the center-of-mass reference frame, so the
wavefunction approximately discribes the positron. We also assume that the atom is not moving at a
relativitic velocity, and (anything else? about the electromagnetic field? spin?).

3The continuum states are essentially all states outside of the span of the bound states.
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=

∣∣∣∣∣∑
lm

∑
n′l′m′

An′l′m′(t) 〈ψnlm(r)|ψn′l′m′(r)〉

∣∣∣∣∣
2

=

∣∣∣∣∣∑
lm

Anlm(t)

∣∣∣∣∣
2

. (2.2)

More specifically, the probability that antihydrogen atom occupies a state with particular
values of n and l at time t is

Pnl(t) =

∣∣∣∣∣∑
m

Anlm(t)

∣∣∣∣∣
2

. (2.3)

The probability that the atom is ionized Pi(t) at time t is simply the probability that the
positron does not take any bound state at time t:

Pi(t) = 1−
∑

n

Pn(t). (2.4)

These ionization and transition probabilities are precisely what we are after.
Returning to the issue of the Schrödinger equation, we must apply our knowledge of the

physical situation to determine the form of the Hamiltonian operator Ĥ(r, t). The equation
is as follows:

ih̄Ψ̇(r, t) = Ĥ(r, t)Ψ(r, t), (2.5)

where
Ĥ(r, t) = Ĥ0(r) + ĥ(r, t), (2.6)

with Ĥ0(r) representing the Hamiltonian of the positron about the antiproton and ĥ(r, t)
representing the positron’s interaction with the external laser field. In analogy to the case
of the regular hydrogen atom, we can deduce this:

Ĥ0(r) = − h̄
2

2µ

∂2

∂r2
− h̄2

µr

∂

∂r
+

L̂2

2µr2
− κ

e2

r
, (2.7)

where L̂ is the angular momentum operator, µ is the reduced mass of the two-particle
system, and κ is Coulomb’s constant. For the laser field, which will be approximated as
an electromagnetic plane wave (linearly (is this pertinent?)) polarized along the z-axis and
travelling in the x-direction, we know this:

ĥ(r, t) = Er cos θ sinωt, (2.8)

where E is the magnitude of the electric component of the laser field with intensity I =√
ε0/µ0E

2 and ω is the angular frequency, given the laser’s frequency νL =(kc/2π)=ω/2π.
Of course, ε0 is the permittivity of free space, µ0 is the permeability of free space, and c is
the speed of light. So, Schrödinger’s equation for this situation is

ih̄Ψ̇(r, t) =

[
− h̄

2

2µ

∂2

∂r2
− h̄2

µr

∂

∂r
+

L̂2

2µr2
− κ

e2

r
+ Er cos θ sinωt

]
Ψ(r, t). (2.9)

We want to solve this equation, but since it has been proven to be impossible to solve ana-
lytically (by whom? when?), we are forced to move to discrete-variable, numerical methods
to find approximate solutions.
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2.2 Discrete Variable Approach

Since we ran into difficulty (i.e. impossibility) with the analytical approach, we move
on to a discrete variable approach, toward approximate relations. It is quite natural to
start by discretizing the time variable, so that is the topic of the first subsection. In the
subsequent subsection we discuss angular momentum- and coordinate-space representations
of the operators and wavefunctions and we move into matrix and vector notation. After that,
we discretize the angular variables and explain our angular quadrature technique. Finally,
in the last subsection we discretize the radial coordinates and describe the spline technique
and radial quadrature rule.

2.2.1 Discrete Time

When we decide to “go discrete,” one possible first step is to consider an alternative form
of the Schrödinger equation – the propagator form:

Ψ(r, t) = e−iĤ(r,0) t/h̄Ψ(r, 0), (2.10)

or
Ψ(r, t+ ∆t) = e−iĤ(r,t)∆t/h̄Ψ(r, t), (2.11)

where the exponential part of the equation “propagates” the wavefunction through time and
is thus called the time propagator. Expanding the propagator out to its polynomial form
gives us the meaning of the Equation 2.11:

Ψ(r, t+ ∆t) =

[
1 − i

∆t

h̄
Ĥ − 1

2

(
∆t

h̄

)2

Ĥ2 + i
1

6

(
∆t

h̄

)3

Ĥ3 + · · ·

]
Ψ(r, t), (2.12)

where Ĥ is evaluated at position r and time t. If ∆t is infinitessimally small, this leads us
straight back to the original form of the Schrödinger equation: when (∆t)2 is negligible, we
have

Ψ(r, t+ ∆t) ≈ Ψ(r, t)− i
∆t

h̄
Ĥ(r, t) Ψ(r, t), (2.13)

or
Ψ(r, t+ ∆t)−Ψ(r, t)

∆t
≈ − i

h̄
Ĥ(r, t)Ψ(r, t), (2.14)

and taking the limit of this equation (or Equation 2.12) as ∆t goes to zero yields the familiar
form.

So, then, we’re dealing with the propagator form of Schrödinger’s equation with finite ∆t.
That implies that we could easily discretize time and talk about moments in time tk that are
separated by the interval ∆t rather than continuous time t. Thus, starting with the initial
state where t= t0 = 0, each application the time propagator will advance the approximate
solution wavefunction in time by ∆t from tk to tk+1 = tk + ∆t:

Ψ(r, tk+1) =

[
1 − i

∆t

h̄
Ĥ − 1

2

(
∆t

h̄

)2

Ĥ2 + i
1

6

(
∆t

h̄

)3

Ĥ3 + · · ·

]
Ψ(r, tk), (2.15)
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where Ĥ is evaluated at position r and time tk. Remembering that Ĥ here is the big operator
we saw in brackets in the original form of Schrödinger’s equation (Equation 2.9), this looks
a lot messier than what we started with. If we didn’t have any tricks up our sleeve, we’d cut
this polynomial off, probably at the second term, necessitating that (∆t)2 be negligible.

But here’s where we reach up our sleeve. Following a procedure suggested by G. I.
Marchuk [1], we replace the propagator with this:[(

1 + i
∆t

2h̄
ĥ

)−1(
1− i

∆t

2h̄
ĥ

)(
1 + i

∆t

2h̄
Ĥ0

)−1(
1− i

∆t

2h̄
Ĥ0

)]
. (2.16)

Note that this expression is a product of operators, where no operator contains both ĥ and
Ĥ0. We can make this replacement because if we expand the given expression (by using a
binomial expansion to take care of the exponents and multiplying the terms out) and collect
terms with like powers of ∆t, then we find that it matches the true propagator up to terms
of order (∆t)2: [

1 − i
∆t

h̄

(
Ĥ0 + ĥ

)
− 1

2

(
∆t

h̄

)2(
Ĥ0 + ĥ

)2

+ i
1

6

(
∆t

h̄

)3(
3

2
Ĥ0

3
+ 3Ĥ0

2
ĥ+ 3Ĥ0ĥ

2 +
3

2
ĥ3

)
+ · · ·

]
. (2.17)

The price for using this operator, then, is that we’ll have to keep (∆t)3 negligible when we
do our calculations, so that our new replacement-propagator equation holds approximately
true. Well, that’s cheaper than the cost of our default technique, where we had to keep (∆t)2

negligible. This replacement is sounding good already, but wait, there’s more!
If we break the operator in half and rearrange the equation slightly, we’ll find that we

have a very simple set of resulting operators on our hands. We can consider the operator in
Expression 2.16 as four operators multiplied together, where each operator acts in succession
on the wavefunction. Breaking the quartet of operators in half, we can consider the right
two to be acting first and the left two to be acting second. So after applying the first
set of operators, we get an intermediate wavefunction between Ψ(r, tk) and Ψ(r, tk+1), and
then applying the second set of operators gives us Ψ(r, tk+1). We might as well call the
intermediate wavefunction Ψ(r, tk+1/2) to keep track of our progress toward the solution;
whether or not this wavefunction actually approximates the solution function at t = tk+1/2 =
tk + ∆t

2
is not our concern because we will not keep this information in the final solution.

Now we can write the two steps out as

Ψ
(
r, tk+1/2

)
=

[(
1 + i

∆t

2h̄
Ĥ0

)−1(
1− i

∆t

2h̄
Ĥ0

)]
Ψ(r, tk) (2.18)

and

Ψ(r, tk+1) =

[(
1 + i

∆t

2h̄
ĥ

)−1(
1− i

∆t

2h̄
ĥ

)]
Ψ(r, tk+1/2). (2.19)
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Rearranging these equations gives us(
1 + i

∆t

2h̄
Ĥ0

)
Ψ(r, tk+1/2) =

(
1− i

∆t

2h̄
Ĥ0

)
Ψ(r, tk) (2.20)

and (
1 + i

∆t

2h̄
ĥ

)
Ψ(r, tk+1) =

(
1− i

∆t

2h̄
ĥ

)
Ψ(r, tk+1/2). (2.21)

These two resulting equations and their operators are simple because each find simple
expression once put in the appropriate representation. The first equation uses Ĥ0 exclusively,
which, in matrix form, is diagonalizable in its angular momentum representation because it
includes L̂2. The second equation uses ĥ exclusively, which is diagonalizable in its (spherical)
coordinate representation. If each part of the operator were kept together, the matrix form
of the operator would have off-diagonal entries in either representation. Also, we prefer the
arrangement of Equations 2.20 and 2.21 to that of Equations 2.18 and 2.19 because it is easier
to solve a matrix equation of the form Ax=b by Gauss-Jordan elimination of the augmented
matrix [Ab] than to find the inverse of A and multiply b by it. It would be prudent now
to discuss the intricacies of these representations and the matter of transformation between
the representations.

2.2.2 Angular Momentum- and Coordinate-Space Representations

Now that we know we would like to work with the wavefunction in a momentum basis, we
propose that we can express the solution wavefunction in terms of the angular momentum
operator’s eigenfunctions. We know that the spherical harmonics Ylm are eigenfunctions of
L̂ with eigenvalues determined by the quantum number l, but they are also eigenfunctions
for L̂z, the polar component of L̂, with eigenvalues determined by m. All we want, though,
is a basis of eigenstates for L̂2, that is, a basis where each element has a particular l-value.
So we may add spherical harmonics with the same l-value and different m-values to produce
the most general form of basis that we desire. Given a particular value for l, there are 2l+1
spherical harmonic basis functions, and since our new basis must span the same space, it
must have the same number of independent functions. We’ll use the index p to distinguish
these 2l+1 functions and let p range from 0 to 2l.4 Additionally, we will use an index ν
to represent a particular combination of l and p, so ν ≡ (lν , pν).

5 Thus, we form a basis of
angular momentum eigenstates Υν of the form

Υν(Ω) = Υlp(Ω) =
∑
m

Opm Ylm(Ω), (2.22)

where the sum runs over all values of m given a particular value of l. Furthermore, since we
would like this basis to be orthonormal as our original basis was, we constrain the complex

4Later, when we choose a finite number of momentum states for an approximate basis, there will not
necessarily be 2l+1 functions per l-value, so the range of p may be smaller than from 0 to 2l for some l-values.

5There are countably infinitely many of these combinations, so ν may be any integer from one to infinity.
Also, we will oftentimes use the simplified relation ν = (l, p), where the subscripts are understood, to keep
things clean.
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coefficients Opm such that ∫
Υ∗

ν(Ω) Υν′(Ω) dΩ = δνν′ , (2.23)

which means ∑
m

O∗
pmOp′m = δpp′ . (2.24)

Now that we have defined the basis for the momentum-space representation, our proposal
that we may express Ψ in this representation may be stated mathematically:

Ψ(r, t,Ω) =
∑

ν

Fν(r, t) Υν(Ω), (2.25)

where Fν is a complex function on the non-negatives r and t that is associated with a
particular basis element Υν , and the sum runs over all possible values of ν. Note that this
claim is being made in addition to our first claim in Equation 2.1 that the wavefunction has
a bound and an ionized component.

Equation 2.25 expresses the wavefunction Ψ in its (angular) momentum-space representa-
tion, but we can use vector notation to denote this representation more compactly. Defining
ΨM(r, t) to be the momentum-space representation of Ψ(r, t,Ω), we have

ΨM(r, t) =


F1(r, t)
F2(r, t)
F3(r, t)

...

 , (2.26)

where there is a countably infinite number of components in the vector, with each component
corresponding to a particular angular momentum basis element Υν . The νth component in
the vector ΨM may be expressed as ΨM

ν =Fν .
So far we’ve described the wavefunction in the momentum-space representation, but we

haven’t yet mentioned the operators in question. If we look again at Equation 2.20 and
express the wavefunction in our new representation, then we have(

1 + i
∆t

2h̄
Ĥ0(r,Ω)

)∑
ν

Fν(r, tk+1/2) Υν(Ω) =

(
1− i

∆t

2h̄
Ĥ0(r,Ω)

)∑
ν

Fν(r, tk) Υν(Ω)

(2.27)
or, since these operators are linear,∑

ν

(
1 + i

∆t

2h̄
Ĥ0(r,Ω)

)
Fν(r, tk+1/2) Υν(Ω) =

∑
ν

(
1− i

∆t

2h̄
Ĥ0(r,Ω)

)
Fν(r, tk) Υν(Ω),

(2.28)
where

Ĥ0(r,Ω) = − h̄
2

2µ

∂2

∂r2
− h̄2

µr

∂

∂r
+

L̂2

2µr2
− κ

e2

r
. (2.29)

Looking at this equation term by term, we see that since Υν is an eigenfunction of L̂2 with
eigenvalue lν(lν + 1)h̄2, and since Υν is unaffected by the rest of the terms in the operators
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(1± i∆t
2h̄
Ĥ0), we may pull Υν through the operators to obtain

∑
ν

Υν(Ω)

(
1 + i

∆t

2h̄
Ĥ0ν(r,Ω)

)
Fν(r, tk+1/2) =

∑
ν

Υν(Ω)

(
1− i

∆t

2h̄
Ĥ0ν(r,Ω)

)
Fν(r, tk),

(2.30)
where

Ĥ0ν(r,Ω) = Ĥ0ν(r) = − h̄
2

2µ

∂2

∂r2
− h̄2

µr

∂

∂r
+
lν(lν + 1)h̄2

2µr2
− κ

e2

r
. (2.31)

Since each Υν is linearly independent, we can see that this equation is really a series of inde-
pendent equations, ν in quantity. Furthermore, for each of these equations Υν is irrelevant
and may be cancelled, so we have ν independent equations of the form(

1 + i
∆t

2h̄
Ĥ0ν(r)

)
Fν(r, tk+1/2) =

(
1− i

∆t

2h̄
Ĥ0ν(r)

)
Fν(r, tk). (2.32)

Of course, all of this mathematics may also be expressed in bra-ket and matrix and vector
notation. If we examine the matrix elements of the pertinent operators in the Υν basis, then
we see 〈

Υµ

∣∣∣∣(1± i
∆t

2h̄
Ĥ0

)∣∣∣∣Υν

〉
= 〈Υµ|

(
1± i

∆t

2h̄
Ĥ0ν

)
|Υν〉

=

(
1± i

∆t

2h̄
Ĥ0ν

)
〈Υµ|Υν〉

=

(
1± i

∆t

2h̄
Ĥ0ν

)
δµν , (2.33)

where δµν is the Kronecker delta. Thus, we have(
1± i

∆t

2h̄
Ĥ0

)
ΨM(r, t) =



(
1± i∆t

2h̄
Ĥ01

)
0 0 · · ·

0
(
1± i∆t

2h̄
Ĥ02

)
0 · · ·

0 0
(
1± i∆t

2h̄
Ĥ03

)
· · ·

...
...

...
. . .



F1(r, t)
F2(r, t)
F3(r, t)

...

 . (2.34)

So, if we write Equation 2.20 using vector component notation, we have(
1 + i

∆t

2h̄
Ĥ0ν(r)

)
ΨM

ν (r, tk+1/2) =

(
1− i

∆t

2h̄
Ĥ0ν(r)

)
ΨM

ν (r, tk), (2.35)

or (
1 + i

∆t

2h̄
Ĥ0ν(r)

)
Fν(r, tk+1/2) =

(
1− i

∆t

2h̄
Ĥ0ν(r)

)
Fν(r, tk), (2.36)

as we found before.
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That’s enough for the momentum-space representation. Now we would like to discuss
the coordinate-space representation, which is most appropriate for the operators (1± i∆t

2h̄
ĥ).

We presently make a third claim about the manner in which Ψ may be represented:

Ψ(r, t,Ω) = GΩ(r, t). (2.37)

Here, GΩ is a complex function on the non-negative reals r and t. In this respect GΩ is like
Fν . However, GΩ is associated with a particular point Ω=(θ, φ) in angular coordinate space
rather than with a particular momentum eigenstate Υν , as Fν is. Since θ ranges from 0 to
π and φ ranges from 0 to 2π, Ω represents one of uncountably infinitely many points. It is
possible to label each of these points with a distinct real number, so we can give a subscript
α to Ω that ranges from, say, one to infinity. So letting Ωα =(θα, φα), where α is an element
of the interval (1,∞), allows us to “list” these points. We can turn Ψ into a kind of column
vector using this list and simplify our notation by setting GΩα ≡Gα. We define ΨC(r, t) to
be the coordinate-space representation of Ψ(r, t,Ω) so that

ΨC(r, t) =
(
Gα(r, t)

)
α∈(1,∞)

=



G1(r, t)
...

G2(r, t)
...

G3(r, t)
...


. (2.38)

Again we have the component notation ΨC
α (r, t) =Gα, where there are uncountably many

components.
We are interested in representing the operators (1 ± i∆t

2h̄
ĥ) in this vector space as well.

Let’s stay with the vector notation and find the operator’s matrix elements:〈
Ωα

∣∣∣∣(1± i
∆t

2h̄
ĥ

)∣∣∣∣Ωβ

〉
= 〈Ωα|

(
1± i

∆t

2h̄
ĥβ

)
|Ωβ〉

=

(
1± i

∆t

2h̄
ĥβ

)
〈Ωα|Ωβ〉

=

(
1± i

∆t

2h̄
ĥβ

)
δαβ, (2.39)

where
ĥβ(r, t) = Er cos θβ sinωt. (2.40)

Just as the operators (1 ± i∆t
2h̄
Ĥ0) were diagonal in their momentum-space representation,

the operators (1± i∆t
2h̄
ĥ) are diagonal in their coordinate-space representation:(

1± i
∆t

2h̄
ĥ

)
ΨC(r, t)
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=



(
1± i∆t

2h̄
ĥ1

)
· · · 0 · · · 0 · · ·

...
. . .

...
. . .

... · · ·
0 · · ·

(
1± i∆t

2h̄
ĥ2

)
· · · 0 · · ·

...
. . .

...
. . .

... · · ·
0 · · · 0 · · ·

(
1± i∆t

2h̄
ĥ3

)
· · ·

...
...

...
...

...
. . .





G1(r, t)
...

G2(r, t)
...

G3(r, t)
...


. (2.41)

So, if we write Equation 2.21 in vector component notation, then it takes this form:(
1 + i

∆t

2h̄
ĥα(r, tk)

)
ΨC

α (r, tk+1) =

(
1− i

∆t

2h̄
ĥα(r, tk)

)
ΨC

α (r, tk+1/2), (2.42)

or (
1 + i

∆t

2h̄
ĥα(r, tk)

)
Gα(r, tk+1) =

(
1− i

∆t

2h̄
ĥα(r, tk)

)
Gα(r, tk+1/2). (2.43)

Now, Equations 2.36 and 2.43 are what we were looking for, but they of little use to
us if we do not know how to move between the two representations. We need an identity
transformation I that will take a wavefunction in the coordinate-space representation and
return its momentum-space representation, and we need its inverse I−1 to take us in the
opposite direction: ΨM = I(ΨC) and ΨC = I−1(ΨM). Well, if we look at the equation

Ψ(r, t,Ω) =
∑

ν

Fν(r, t) Υν(Ω) = GΩ(r, t), (2.44)

then we see that we conveniently have an orthonormal set {Υν} that relates Fν and GΩ. The
relation between the two is thus 〈Υν |GΩ〉=Fν , or, more verbosely,∫

Υ∗
ν(Ω)GΩ(r, t) dΩ =

∫
Υ∗

ν(Ω)
∑
ν′

Fν′(r, t) Υν′(Ω) dΩ

=
∑
ν′

Fν′(r, t)

∫
Υ∗

ν(Ω) Υν′(Ω) dΩ

=
∑
ν′

Fν′(r, t) δνν′

= Fν(r, t). (2.45)

All of these steps are fine, but if we translate them into matrix and vector notation,
we will have some difficulties. These difficulties naturally arise when one tries to turn an
integration into a matrix operation, but we might as well take a look at that process to
get a feel for how our eventual numerical integration will work. We’ll take our infinite
“integration” matrix and turn it into a finite quadrature matrix, reducing the problem to a
finite number of equations and enabling the use of a computerized numerical program.

Alright, then; let’s find that matrix. We should start by defining what we mean by
integration. Let ∫

f(Ω) dΩ ≡ lim
∆θj ,∆φj → 0

M∑
j=1

f(Ωj) sin θj ∆θj ∆φj, (2.46)
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where the limit implies that the number of points M approaches infinity and the mesh6 of
the partition approaches zero. Then the first integral in Equations 2.45 becomes∫

Υ∗
ν(Ω)GΩ(r, t) dΩ = lim

∆θj ,∆φj → 0

N∑
j=1

Υ∗
ν(Ωj)Gj(r, t) sin θj ∆θj ∆φj

= lim
∆θj ,∆φj → 0

N∑
j=1

Υ∗
ν(Ωj)

∑
ν′

Fν′(r, t) Υν′ (Ω) sin θj ∆θj ∆φj

=
∑
ν′

Fν′(r, t) lim
∆θj ,∆φj → 0

N∑
j=1

Υ∗
ν(Ωj) Υν′ (Ω) sin θj ∆θj ∆φj

=
∑
ν′

Fν′(r, t) δνν′

= Fν(r, t). (2.47)

So we have, in matrix notation,

ΨM(r, t) =


F1(r, t)
F2(r, t)
F3(r, t)

...



= lim
∆θj ,∆φj → 0


Υ∗

1(Ωj1) sinθj1 ∆θj1 ∆φj1 Υ∗
1(Ωj2) sinθj2 ∆θj2 ∆φj2 · · ·

Y ∗
2 (Ωj1) sinθj1 ∆θj1 ∆φj1 Υ∗

2(Ωj2) sinθj2 ∆θj2 ∆φj2 · · ·
Y ∗

3 (Ωj1) sinθj1 ∆θj1 ∆φj1 Υ∗
3(Ωj2) sinθj2 ∆θj2 ∆φj2 · · ·

...
...

. . .



Gj1(r, t)
Gj2(r, t)
Gj3(r, t)

...

 ,
(2.48)

where the j-values (j1, j2, j3, etc.) are determined by the particular partition. We can define
this integral a bit more loosely by imagining that we can actually take the limit and produce
a simple matrix and vector equation. In the limit, each ∆θj ∆φj would become infinitesimal,
and they could all be factored out of the matrix. Also, the vector with the Gj components
would become our familiar ΨC :

ΨM(r, t) =


F1(r, t)
F2(r, t)
F3(r, t)

...



=


Υ∗

1(Ω1) sinθ1 · · · Υ∗
1(Ω2) sinθ2 · · · Υ∗

1(Ω3) sinθ3 · · ·
Υ∗

2(Ω1) sinθ1 · · · Υ∗
2(Ω2) sinθ2 · · · Υ∗

2(Ω3) sinθ3 · · ·
Υ∗

3(Ω1) sinθ1 · · · Υ∗
3(Ω2) sinθ2 · · · Υ∗

3(Ω3) sinθ3 · · ·
...

...
...

...
...

. . .

 dθ dφ


G1(r, t)
...

G2(r, t)
...

G3(r, t)
...


6In this two-dimensional case, the mesh of the partition is the largest area ∆θj ∆φj determined by the

partition of the angular coordinate space.
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= I ΨC(r, t). (2.49)

So we have now found the matrix form of our transformation I. Of course, this loose matrix
version of the integral is not a practical transformation if we are going to be using actual
numbers. We don’t want to have to deal with infinitessimals or with uncountably infinitely
many elements, or countably infinitely many for that matter. What we need to do now is
reduce each vector to a finite number of components and find an approximate version of this
integration transformation that is invertible. What we need to do is to discretize the angular
coordinates and come up with a means for numerical integration.

2.2.3 Discrete Angular Coordinates and Quadrature

Let’s recapitulate what has happened so far in our quest to solve Schrödinger’s equation.
We have discretized the time variable to escape the intractability of the analytical approach.
We have found a nice replacement propagator that happens to separate the operator with
Ĥ0, which affects angular coordinates, and the operator with ĥ, which is merely coordinate-
dependent. We thereby came up with two equations that are most conveniently represented
in different bases. And now we have determined that to move back and forth between the
two representations, we should discretize the angular coordinates and come up with a means
for numerical integration.

We shall overcome this current predicament by using a special technique of numerical
integration called Gaussian quadrature. In the context of geometry, quadrature refers to the
construction of a square with the same area as a given shape or surface. In the context of
integration of a real function of one variable, quadrature refers to the approximation of a
definite integral of a function essentially by summing the signed areas of multiple rectangles
that approximate the signed area between the given function and the axis of the independent
variable. Quadrature is therefore synonymous with numerical integration. Quadrature also
refers to multidimensional numerical integration, which is sometimes called cubature. In our
case we will use a complex two-dimensional N -point Gaussian quadrature rule. We will use
this quadrature rule to integrate the function Υ∗(θ, φ)G(r, t) over the two variables θ and φ
using discrete points.

Using Gaussian quadrature, we may specify N , the number of points we wish to use,
and the rest is mathematically optimized: the locations of the points Ωj are determined and
weights ωj are determined such that∑

j

ωj Υ∗
ν(Ωj) Υν′(Ωj) =

∫
Υ∗

ν(Ω) Υν′(Ω) dΩ = δνν′ , (2.50)

which implies that

∑
m

∑
m′

O∗
pmOp′m′

(∑
j

ωj Y
∗
lm(Ωj)Yl′m′(Ωj)

)
= δνν′ = δll′pp′ = δll′δpp′ . (2.51)

So, we therefore have∑
j

ωj Υ∗
ν(Ωj)Gj(r, t) =

∫
Υ∗

ν(Ω)GΩ(r, t) dΩ = Fν(r, t). (2.52)
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Then, if we denote this discretization with a tilde over the wavefunciton like so, Ψ̃, then we
have

ΨM(r, t) =


F1(r, t)
F2(r, t)
F3(r, t)

...



=


ω1 Υ∗

1(Ω1) ω2 Υ∗
1(Ω2) · · · ωN Υ∗

1(ΩN)
ω1 Υ∗

2(Ω1) ω2 Υ∗
2(Ω2) · · · ωN Υ∗

2(ΩN)
ω1 Υ∗

3(Ω1) ω2 Υ∗
3(Ω2) · · · ωN Υ∗

3(ΩN)
...

... · · · ...



G1(r, t)
G2(r, t)

...
GN(r, t)


= Ĩ Ψ̃C(r, t). (2.53)

Note that ΨM is not affected by this change. We have here a transformation matrix Ĩ that
has N columns of countably infinite length. What we want, however, is an invertible matrix,
so we have to cut the length of these columns to make Ĩ a square matrix. Somehow, then,
we have to determine which spherical harmonics shall take precedence in our problem. We
shall take the approach of using the lowest possible values first, so the order of preference
will go like this: ν1 = (0, 0), ν2 = (1, 0), ν3 = (1,−1), ν4 = (1, 1), ν5 = (2, 0), ν6 = (2,−1),
ν7 = (2, 1), ν8 = (2,−2), ν9 = (2, 2), and so on until we have N spherical harmonics. Now,
if we use another tilde to denote the finite version of ΨM and if we call the final truncated
transformation Q for “quadrature” or “questionably sufficiently many momentum states,”
then we have

Ψ̃M(r, t) =


F1(r, t)
F2(r, t)

...
FN(r, t)



=


ω1 Υ∗

1(Ω1) ω2 Υ∗
1(Ω2) · · · ωN Υ∗

1(ΩN)
ω1 Υ∗

2(Ω1) ω2 Υ∗
2(Ω2) · · · ωN Υ∗

2(ΩN)
...

...
. . .

...
ω1 Υ∗

N(Ω1) ω2 Υ∗
N(Ω2) · · · ωN Υ∗

N(ΩN)



G1(r, t)
G2(r, t)

...
GN(r, t)


= Q Ψ̃C(r, t), (2.54)

and we have finally found the desired transformation, assuming that Q is actually invertible.
Now we can move back and forth between the two representations and attempt to solve the
two vector equations (or 2N scalar equations) that will propagate our approximate solution
wavefunction through time.

2.2.4 Discrete Radial Coordinates, Splines, and More Quadrature

We want to solve Equations 2.36 and 2.43, shown again here:(
1 + i

∆t

2h̄
Ĥ0ν(r)

)
Fν(r, tk+1/2) =

(
1− i

∆t

2h̄
Ĥ0ν(r)

)
Fν(r, tk) (2.55)
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(
1 + i

∆t

2h̄
ĥj(r, tk)

)
Gj(r, tk+1) =

(
1− i

∆t

2h̄
ĥj(r, tk)

)
Gj(r, tk+1/2) (2.56)

Remember that ν takes N different values and j takes N different values, yielding a total of
2N equations, and remember that

Ĥ0ν(r) = − h̄
2

2µ

∂2

∂r2
− h̄2

µr

∂

∂r
+
lν(lν + 1)h̄2

2µr2
− κ

e2

r
(2.57)

and
ĥj(r, t) = Er cos θj sinωt. (2.58)

Thus there are N differential equations and N linear equations. These are quite complicated
equations, especially given that Fν(r, tk) and Gj(r, tk) are complex functions.

Our first consideration in moving closer to a solution is the boundary conditions. We
will start by taking a step in analogy with the regular hydrogen problem. In that simpler
problem we had the relationship U=rR, where the radial wavefunction could be multiplied
by r to yield the the function U , whose magnitude squared is the radial probability density
funcion. The function U had the Dirichlet boundary condition of equalling zero at the origin
and at infinity. This is a nice condition to have in a differential equation, so we will mirror
this procedure and multiply our radial functions Fν and Gj by r to yield the functions Vν

and Wj:
Vν(r, t) = r Fν(r, t) (2.59)

and
Wj(r, t) = r Gj(r, t), (2.60)

where Vν and Wj are complex functions. Thinking of vector notation again, let’s define

ŨM(r, t) = r Ψ̃M(r, t) (2.61)

and
ŨC(r, t) = r Ψ̃C(r, t), (2.62)

where Vν = ŨM
ν (r, t) and Wj = ŨC

j (r, t). As it happens, multiplying by r does not change the

transformation Q between the two representations, so ŨM(r, t)=Q ŨC(r, t). As was the case

in the original hydrogen problem, the hamiltonian Ĥ0ν will become more simple after this
transformation; ĥj, however, will remain the same. Equations 2.55 and 2.56 thus become[

1 + i
∆t

2h̄

(
− h̄2

2µ

∂2

∂r2
+

lν(lν + 1)h̄2

2µr2
− κ

e2

r

)]
Vν(r, tk+1/2)

=
[
1− i

∆t

2h̄

(
− h̄2

2µ

∂2

∂r2
+

lν(lν + 1)h̄2

2µr2
− κ

e2

r

)]
Vν(r, tk) (2.63)

and [
1 + i

∆t

2h̄
(Er cos θj sinωtk)

]
Wj(r, tk+1) =

[
1− i

∆t

2h̄
(Er cos θj sinωtk)

]
Wj(r, tk+1/2). (2.64)

17



Next we shall use a numerical technique involving splines to solve the differential equa-
tions. In mathematics, splines are piecewise-defined polynomials that are used to fit a curve
to a discrete set of data points (a.k.a. nodes or knots). The name spline may refer to
the individual piecewise-defined polynomials or the resulting fitted curve. If we sample our
initial wavefunction at a finite number Ns of radial positions7, then we will be able to rep-
resent it approximately with these interpolated polynomials, which are easily differentiated.
Specifically, we shall approximate the two complex functions Vν and Wj using overlapping
segments of real fifth degree polynomials, or splines, multiplied by complex coefficients. We
will also approximate the first and second derivatives of each function using fifth degree
splines. In this way we can force the whole wavefunction and its first and second derivatives
to be continuous everywhere with respect to r by requiring that the splines be continuous at
the end points of the segments. The chosen radial points furthest from the origin should be
located far away enough such that the functions at these locations are essentially zero for all
time; thus we will meet the outer Dirichlet boundary condition for the functions and ensure
that we don’t have reflections of our solution from the boundary.

Let’s look in detail at each of the splines we are using for these functions. First, assume
we have selected the Ns radial points starting with r1 =0 and ending with rNs . We are free
to pick these points as we desire. These points are not necessarily evenly spaced; in fact, it’s
better if they are less dense further from the origin since the functions will approach zero,
become flat, and be easily described by fewer points. Anyway, let rι−1, rι, and rι+1 be three
consecutive points; each interval (rι−1, rι+1) determined by such a set will have three pairs
of piecewise-defined polynomials, where one pair determines the value at rι, another pair
determines the first derivative at rι, and the last pair determines the second derivative at rι.

The first pair of polynomials is shown in Figure 1. On the left side, from rι−1 to rι, is
Sι00, and on the right side, from rι to rι+1, is Sι01. Let

Sι00(r) = sι000 + sι001r + sι002r
2 + sι003r

3 + sι004r
4 + sι005r

5 (2.65)

such that
Sι00(rι−1) = Sι00

′(rι−1) = Sι00
′′(rι−1) = 0

Sι00(rι) = 1, Sι00
′(rι) = Sι00

′′(rι) = 0, (2.66)

and let
Sι01(r) = sι010 + sι011r + sι012r

2 + sι013r
3 + sι014r

4 + sι015r
5 (2.67)

such that
Sι01(rι) = 1, Sι01

′(rι) = Sι01
′′(rι) = 0

Sι01(rι+1) = Sι01
′(rι+1) = Sι01

′′(rι+1) = 0. (2.68)

If we multiply these polynomials by some constant, then we will ensure that the function
using this spline will equal that constant at rι.

The second pair of polynomials is shown in Figure 2. On the left side, from rι−1 to rι, is
Sι10, and on the right side, from rι to rι+1, is Sι11. Let

Sι10(r) = sι100 + sι101r + sι102r
2 + sι103r

3 + sι104r
4 + sι105r

5 (2.69)

7The s in Ns stands for “spline nodes.”
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Figure 1: Spline 1: Sι00(r) for r ∈ [rι−1, rι] and Sι01(r) for r ∈ [rι, rι+1]. See Appendix B for
the explicit equations.

Figure 2: Spline 2: Sι10(r) for r ∈ [xι−1, rι] and Sι11(r) for r ∈ [rι, rι+1]. See Appendix B
for the explicit equations. Note that the vertical axis is not at the same scale as the vertical
axis in Figure 1: Spline 2 is actually shorter than Spline 1.

such that
Sι10(rι−1) = Sι10

′(rι−1) = Sι10
′′(rι−1) = 0

Sι10(rι) = 0, Sι10
′(rι) = 1, Sι10

′′(rι) = 0, (2.70)

and let
Sι11(r) = sι110 + sι111r + sι112r

2 + sι113r
3 + sι114r

4 + sι115r
5 (2.71)

such that
Sι11(rι) = 0, Sι11

′(rι) = 1, Sι11
′′(rι) = 0

Sι11(rι+1) = Sι11
′(rι+1) = Sι11

′′(rι+1) = 0. (2.72)

If we multiply these polynomials by some constant, then we will ensure that the function
using this spline will have a first derivative equal to that constant at rι.

The third pair of polynomials is shown in Figure 3. On the left side, from rι−1 to rι, is
Sι20, and on the right side, from rι to rι+1, is Sι21. Let

Sι20(r) = sι200 + sι201r + sι202r
2 + sι203r

3 + sι204r
4 + sι205r

5 (2.73)

such that
Sι20(rι−1) = Sι20

′(rι−1) = Sι20
′′(rι−1) = 0
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Figure 3: Spline 3: Sι20(r) for r ∈ [rι−1, rι] and Sι21(r) for r ∈ [rι, rι+1]. See Appendix B
for the explicit equations. Note that the vertical axis is not at the same scale as the vertical
axis in Figure 1: Spline 3 is actually much shorter than Spline 1.

Sι20(rι) = Sι20
′(rι) = 0, Sι20

′′(rι) = 1, (2.74)

and let
Sι21(r) = sι210 + sι211r + sι212r

2 + sι213r
3 + sι214r

4 + sι215r
5 (2.75)

such that
Sι21(rι) = Sι21

′(rι) = 0, Sι21
′′(rι) = 1

Sι21(rι+1) = Sι21
′(rι+1) = Sι21

′′(rι+1) = 0. (2.76)

If we multiply these polynomials by some constant, then we will ensure that the function
using this spline will have a second derivative equal to that constant at rι.

We’ve described one three-point interval starting at rι−1 and ending at rι+1, where a spline
consisting of six fifth-degree polynomials characterizes the middle point rι. To characterize
the points rι−1 and rι+1 we must allow additional splines to overlap: one spline must extend
from rι−2 to rι and another must extend from rι to rι+2. In this way, all points may be
characterized with overlapping splines. Only the endpoints r1 and rNs must be treated
differently since no intervals are defined before r1 and after rNs . They will require three
polynomials each instead of six; however, in Equation 2.77 below, we will define all six
polynomials and simply ignore the three outside the region of interest. All of this spline
business is summarized in Figure 4.

Now, we can finally mathematically represent our functions with splines:

Vν(r, t) =
Ns∑
ι=1

2∑
ζ=0

1∑
ξ=0

vν
ιζ(t)Sιζξ(r), (2.77)

where the coefficient function vν
ιζ(t) is complex. The same goes for Wj(r, t), except its

coefficient function is wj
ιζ(t). Since we are defining these functions only from r1 = 0 to

rNs , we may ignore those functions defined outside of this interval: S0ζ0 and SNsζ1. These
functions were included merely to keep the summation simple. Given Equation 2.77 and the
preceding explanations, you should agree with the following relations:

Vν(rι, t) = vν
ι0(t)Sι00(rι) = vν

ι0(t)Sι01(rι) = vν
ι0(t) (2.78)
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Figure 4: This diagram illustrates how the splines cover overlapping intervals, given Ns =6.
It also illustrates how small the splines characterizing the second derivative are compared
with the other two splines: they look essentially flat until the node points spread out. These
splines are multiplied by complex numbers and added together to construct the wavefunction
at some point in time.

Vν
′(rι, t) = vν

ι1(t)Sι10(rι) = vν
ι1(t)Sι11(rι) = vν

ι1(t) (2.79)

Vν
′′(rι, t) = vν

ι2(t)Sι20(rι) = vν
ι2(t)Sι21(rι) = vν

ι2(t) (2.80)

Due to the boundary conditions, both vν
00(t) and vν

Ns0
(t) must be zero. We will find later on

that it will also be very convenient for us to set another coefficient to zero: we pick vν
Ns1

(t)
since it should be extremely close to zero anyway. We’ll just say it’s zero now and explain
why that’s helpful later. If we look at the first derivative of Vν at points other than the rι’s,
we simply have

Vν
′(r, t) =

Ns∑
ι=1

2∑
ζ=0

1∑
ξ=0

vν
ιζ(t)Sιζξ

′(r). (2.81)

Similar relations apply for Wj
′ and the second derivatives. Since the splines Sιζξ are all

determined once the radial points are picked, their derivatives Sιζξ
′ and Sιζξ

′′ are also deter-
mined and known. It is the coefficients vν

ιζ(t) and wj
ιζ(t) for t > 0 that will be unknown in

our equations that propagate the wavefunction.
Although our notation so far has been quite explicit and clear, three indices and summa-

tion signs will become bothersome if we carry on in this manner. To whittle our way down
to one index, we can first piece together each associated pair of splines that have the same
coefficient; that gets rid of the ξ index and one summation. Then we can “telescope out”
(i.e. expand) the remaining double summation and name each term with only one index: s.
The order will be determined by first running through the ζ index and then the ι index. We
will also leave out the splines that we already know are multiplied by zero. Thus, we have
defined vν

s , wj
s, and Ss, where S1 =S110+S111, S2 =S120+S121, S3 =S200+S201, S4 =S210+S211,

S5 =S220+S221, and so on. The index s, as it stands now, ranges from 1 to 3Ns−3, so we
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have

Vν(r, t) =
3Ns−3∑

s=1

vν
s (t)Ss(r), (2.82)

and similarly for Wj. Since the splines are a linearly independent set and we are using them

as an approximate basis, each Vν and Wj may be represented as a row vector and the Ũ ’s
may thereby be represented as matrices. Rather than coming up with a new name, we can
just see wj

s and vν
s as the elements of the matrices w and v, where the superscripts indicate

the row number and the subscripts indicate the column number. We may further consider
vs to denote the columns of the matrix v and vν to denote the rows. With this notation,
we still have the same transformation matrix as before, v(t) =Qw(t), so long as we insure
that N , the number of momentum states and angular points, equals 3Ns−3, the number of
splines.

With our new representations of Vν and Wj, we may now look again at Equations 2.63
and 2.64. If we replace Vν and Wj with their series forms, as illustrated in Equation 2.82,
then we can rearrange the equations like so:

3Ns−3∑
s=1

[{
1 + i∆t

(
lν(lν + 1)h̄

4µr2
− κ

e2

2h̄r

)}
Ss(r)−

{
i∆t

h̄

4µ

}
Ss

′′(r)
]

vν
s (tk+1/2)

=
3Ns−3∑

s=1

[{
1− i∆t

(
lν(lν + 1)h̄

4µr2
− κ

e2

2h̄r

)}
Ss(r)−

{
i∆t

h̄

4µ

}
Ss

′′(r)
]

vν
s (tk) (2.83)

and
3Ns−3∑

s=1

[{
1 + i

∆t

2h̄
(Er cos θj sinωtk)

}
Ss(r)

]
wj

s(tk+1)

=
3Ns−3∑

s=1

[{
1− i

∆t

2h̄
(Er cos θj sinωtk)

}
Ss(r)

]
wj

s(tk+1/2). (2.84)

All of this will look much simpler if we coalesce the terms in the square brackets into
individual symbols. Letting8

Pν
s (r) =

{
1 + i∆t

(
lν(lν + 1)h̄

4µr2
− κ

e2

2h̄r

)}
Ss(r)−

{
i∆t

h̄

4µ

}
Ss

′′(r), (2.85)

Mν
s(r) =

{
1− i∆t

(
lν(lν + 1)h̄

4µr2
− κ

e2

2h̄r

)}
Ss(r)−

{
i∆t

h̄

4µ

}
Ss

′′(r), (2.86)

Pj
s (r, tk) =

{
1 + i

∆t

2h̄
(Er cos θj sinωtk)

}
Ss(r), (2.87)

and

Mj
s(r, tk) =

{
1− i

∆t

2h̄
(Er cos θj sinωtk)

}
Ss(r), (2.88)

8P for plus and M for minus.
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we now have
3Ns−3∑

s=1

Pν
s (r) vν

s (tk+1/2) =
3Ns−3∑

s=1

Mν
s(r) v

ν
s (tk) (2.89)

and
3Ns−3∑

s=1

Pj
s (r)w

j
s(tk+1) =

3Ns−3∑
s=1

Mj
s(r)w

j
s(tk+1/2). (2.90)

Since we are using these equations to propagate the coefficients into the future, we can
assume we know the coefficients on the right-hand sides, vν

s (tk) and wj
s(tk+1/2). We might as

well condense the right hand sides as well: let

N ν(r, tk) =
3Ns−3∑

s=1

Mν
s(r) v

ν
s (tk) (2.91)

and

N j(r, tk+1/2) =
3Ns−3∑

s=1

Mj
s(r, tk)w

j
s(tk+1/2). (2.92)

That leaves us with
3Ns−3∑

s=1

Pν
s (r) vν

s (tk+1/2) = N ν(r, tk) (2.93)

and
3Ns−3∑

s=1

Pj
s (r, tk)w

j
s(tk+1) = N j(r, tk+1/2). (2.94)

Now, if we consider ν and j to be constant, for each of these two equations we have 3Ns−3
unknown coefficients. The coefficients are complex and the equations are linear, so we need
to have the same number of equations as there are unknowns to solve for the unknowns. We
need to pick 3Ns−3 radial points and evaluate these equations at those points. If we pick
three new points within each (rι, rι+1) interval9, then we’ll have 3(Ns−1)=3Ns−3 equations,
which is exactly what we need. (This is why we chose vν

Ns1
(t) to be zero – so we would have

3Ns−3 unknown coefficients instead of 3Ns−2.) Let’s call the number of points we pick Nr,
so Nr =3Ns−3. We won’t just pick any random three points in each interval, though. We’ll
use a Gaussian quadrature rule again, this time chosen so that we may perform an integral
that will later be of interest (in Equations 2.99):

Nr∑
i=1

ωiRnl(ri)
1

ri

Ss(ri) =

∫ rNs

0

Rnl(r)
1

r
Ss(r) =

〈
Rnl(r)

∣∣∣∣ 1r Ss(r)

〉
, (2.95)

for each s. Anyway, once these collocation points are chosen we have everything we need to
solve our problem.

It would be prudent to write this all out in vector notation before moving on. Let’s
consider only the momentum-representation for the time being and rewrite equation 2.93.

9These newly chosen radial points will be called collocation points, as distinguished from the nodes that
were picked for the splines. They are collocated in triples within each interval between the nodes.
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We’ve already described vν as a row vector, but since we all seem to love dealing with column
vectors and multiplying them by matrices from the right, we’ll write vν as a column vector
here rather than a row vector. We have

[
Pν

1 (r) Pν
2 (r) · · · Pν

Nr
(r)

]


vν
1 (tk+1/2)
vν

2 (tk+1/2)
...

vν
Nr

(tk+1/2)

 = N ν(r, tk). (2.96)

Then, after picking the collocation points, we have
Pν

1 (r1) Pν
2 (r1) · · · Pν

Nr
(r1)

Pν
1 (r2) Pν

2 (r2) · · · Pν
Nr

(r2)
...

...
. . .

...
Pν

1 (rNr) Pν
2 (rNr) · · · Pν

Nr
(rNr)




vν
1 (tk+1/2)
vν

2 (tk+1/2)
...

vν
Nr

(tk+1/2)

 =


N ν(r1, tk)
N ν(r2, tk)

...
N ν(rNr , tk)

 . (2.97)

Let’s call the matrix on the left Pν . So long as Pν is invertible, we may thus use Gauss-Jordan
elimination on the augmented matrix to solve the equation:

Pν
1 (r1) Pν

2 (r1) · · · Pν
Nr

(r1) N ν(r1, tk)
Pν

1 (r2) Pν
2 (r2) · · · Pν

Nr
(r2) N ν(r2, tk)

...
...

. . .
...

...
Pν

1 (rNr) Pν
2 (rNr) · · · Pν

Nr
(rNr) N ν(rNr , tk)



∼


1 0 · · · 0 vν

1 (tk+1/2)
0 1 · · · 0 vν

2 (tk+1/2)
...

...
. . .

...
...

0 0 · · · 1 vν
Nr

(tk+1/2)

 . (2.98)

It is worthwhile to note that the augmented matrix is sparse, as is illustrated in Figure 5.
This fact will be of some importance when choosing the computational method for Gauss-
Jordan elimination. This same process should work in solving for the coefficients wj

s.
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266666666666666666666666666666666666666664

Pν
1 (r1) Pν

2 (r1) Pν
3 (r1) Pν

4 (r1) Pν
5 (r1) 0 0 0 · · · 0 0 0 0 N ν(r1, tk)

Pν
1 (r2) Pν

2 (r2) Pν
3 (r2) Pν

4 (r2) Pν
5 (r2) 0 0 0 · · · 0 0 0 0 N ν(r2, tk)

Pν
1 (r3) Pν

2 (r3) Pν
3 (r3) Pν

4 (r3) Pν
5 (r3) 0 0 0 · · · 0 0 0 0 N ν(r3, tk)

0 0 Pν
3 (r4) Pν

4 (r4) Pν
5 (r4) Pν

6 (r4) Pν
7 (r4) Pν

8 (r4) · · · 0 0 0 0 N ν(r4, tk)

0 0 Pν
3 (r5) Pν

4 (r5) Pν
5 (r5) Pν

6 (r5) Pν
7 (r5) Pν

8 (r5) · · · 0 0 0 0 N ν(r5, tk)

0 0 Pν
3 (r6) Pν

4 (r6) Pν
5 (r6) Pν

6 (r6) Pν
7 (r6) Pν

8 (r6) · · · 0 0 0 0 N ν(r6, tk)

0 0 0 0 0 Pν
6 (r7) Pν

7 (r7) Pν
8 (r7) · · · 0 0 0 0 N ν(r7, tk)

0 0 0 0 0 Pν
6 (r8) Pν

7 (r8) Pν
8 (r8) · · · 0 0 0 0 N ν(r8, tk)

0 0 0 0 0 Pν
6 (r9) Pν

7 (r9) Pν
8 (r9) · · · 0 0 0 0 N ν(r9, tk)

...
...

...
...

...
...

...
...

. . .
...

...
...

...
...

0 0 0 0 0 0 0 0 · · · Pν
Nr−3(rNr−5) Pν

Nr−2(rNr−5) Pν
Nr−1(rNr−5) 0 N ν(rNr−5, tk)

0 0 0 0 0 0 0 0 · · · Pν
Nr−3(rNr−4) Pν

Nr−2(rNr−4) Pν
Nr−1(rNr−4) 0 N ν(rNr−4, tk)

0 0 0 0 0 0 0 0 · · · Pν
Nr−3(rNr−3) Pν

Nr−2(rNr−3) Pν
Nr−1(rNr−3) 0 N ν(rNr−3, tk)

0 0 0 0 0 0 0 0 · · · Pν
Nr−3(rNr−2) Pν

Nr−2(rNr−2) Pν
Nr−1(rNr−2) Pν

Nr
(rNr−2) N ν(rNr−2, tk)

0 0 0 0 0 0 0 0 · · · Pν
Nr−3(rNr−1) Pν

Nr−2(rNr−1) Pν
Nr−1(rNr−1) Pν

Nr
(rNr−1) N ν(rNr−1, tk)

0 0 0 0 0 0 0 0 · · · Pν
Nr−3(rNr ) Pν

Nr−2(rNr ) Pν
Nr−1(rNr ) Pν

Nr
(rNr ) N ν(rNr , tk)

377777777777777777777777777777777777777775

Figure 5: This is the augmented version of the P ν matrix. The number of rows (Nr) indicates the number of collocation points
that were chosen to give us enough equations to solve for the 3Ns−3 spline coefficients (Nr =3Ns−3). The number of columns
(3Ns−2) indicates the number of splines used, plus another column of complex numbers. Since there are three collocations points
per two-node interval and each spline Ss (except for the end-splines) are considered as extending over three-node intervals, there
are six nonzero entries per column. Since there are three splines per three-node interval (characterizing the values of the function
and its first and second derivatives at the center node), there is a repeated three-column pattern in the placement of nonzero
elements. The end-splines only cover one interval each; there are two splines associated with the origin and one spline associated
with the extremal radial point.
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Finally, we have determined how to solve for an approximate discrete time-evolved wave-
function, using splines and their coefficients in two representations. We may thus return
to our original question: what is the probability Pn(t) that the antihydrogen atom will be
in a state with energy En at time t? We can answer this question now in terms of these
coefficients. Here is a restatement of Equation 2.2 that is finally expressed in the spline
coefficient representation of the solution wavefunction:

Pn(t) =

∣∣∣∣∣
〈∑

lm

ψnlm(r)

∣∣∣∣∣Ψ(r, t)

〉∣∣∣∣∣
2

=

∣∣∣∣∣∑
lm

〈ψnlm(r)|Ψ(r, t)〉

∣∣∣∣∣
2

=

∣∣∣∣∣∑
lm

∑
ν

〈Rnl(r)Ylm(Ω)|Fν(r, t) Υν(Ω)〉

∣∣∣∣∣
2

=

∣∣∣∣∣∑
lm

∑
ν

∑
m′

〈
Rnl(r)Ylm(Ω)

∣∣∣∣ 1r Vν(r, t)Opνm′ Ylνm′(Ω)

〉∣∣∣∣∣
2

=

∣∣∣∣∣∑
lm

∑
ν

∑
m′

∑
s

〈
Rnl(r)Ylm(Ω)

∣∣∣∣ 1r vν
s (t)Ss(r)Opνm′ Ylνm′(Ω)

〉∣∣∣∣∣
2

=

∣∣∣∣∣∑
lm

∑
lνpν

∑
m′

∑
s

〈
Rnl(r)Ylm(Ω)

∣∣∣∣ 1r vlνpν
s (t)Ss(r)Opνm′ Ylνm′(Ω)

〉∣∣∣∣∣
2

=

∣∣∣∣∣∑
lm

∑
lνpν

∑
m′

∑
s

〈
Rnl(r)

∣∣∣∣ 1r Ss(r)

〉
〈Ylm(Ω)|Ylνm′(Ω)〉 vlνpν

s (t)Opνm′

∣∣∣∣∣
2

=

∣∣∣∣∣∑
lm

∑
pl

∑
s

〈
Rnl(r)

∣∣∣∣ 1r Ss(r)

〉
vlpl

s (t)Oplm

∣∣∣∣∣
2

=

∣∣∣∣∣∑
lm

∑
pl

∑
s

∑
i

ωiRnl(ri)
1

ri

Ss(ri) v
lpl
s (t)Oplm

∣∣∣∣∣
2

.

Similarly, Equation 2.3 is restated as

Pnl(t) =

∣∣∣∣∣∑
m

∑
pl

∑
s

∑
i

ωiRnl(ri)
1

ri

Ss(ri) v
lpl
s (t)Oplm

∣∣∣∣∣
2

. (2.99)

To be blunt, that concludes the explication of our mathematical approach.

2.3 Condensed Review

With such a long and involved explanation of our approach, it would be nice to restate
the important parts concisely, so as to obtain a good over-all perspective. Here we go, then.
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We started with the question of finding the time-dependent probability of an antihydrogen
atom being in a particular energy eigenstate. Thus, we had to solve the time-dependent
Shroödinger equation for this situation. As the problem was not ammenable to analytic
solution, we disretized time and used an approximation of the propagator; we used a two-
step propagation method, as described by Marchuk [1]. At this point we had Equations 2.20
and 2.21: (

1 + i
∆t

2h̄
Ĥ0(r)

)
Ψ(r, tk+1/2) =

(
1− i

∆t

2h̄
Ĥ0(r)

)
Ψ(r, tk), (2.100)

a differential equation, and(
1 + i

∆t

2h̄
ĥ(r, tk)

)
Ψ(r, tk+1) =

(
1− i

∆t

2h̄
ĥ(r, tk)

)
Ψ(r, tk+1/2), (2.101)

a linear equation. Since each of these equations is most simply handled in a different repre-
sentation, we developed our method of representation in momentum- and coordinate-space
and found an invertible transformation that could move us between the representations.
In this development, we discretized the angular coordinates and chose which N momenta
states and N angular points would take precedence. We then had Ψ̃M

ν =Fν , Ψ̃C
j =Gj, and

Ψ̃M =Q Ψ̃C .
Our next step was in analogy with the free-space hydrogen problem; we multiplied our

latest versions of Equations 2.100 and 2.101 by r, which gave us a more simple version of
the differential equation (Equation 2.100) with ŨM =rΨ̃M , ŨC =rΨ̃C , and ŨM =Q ŨC . We

also let ŨM
ν =Vν and ŨC

j =Wj. Then, since we knew we would be using computers to solve
our equations for us, we used spline approximations of U in both representations to turn the
differential equation into a linear equation. Using quintic splines with Ns nodes, that left us
with Nr =3Ns − 3 splines, considering the boundary conditions. The time-dependent spline
coefficients were called vν

s and wj
s, and the transformation between the two representations

remained the same: v(t)=Qw(t), or
v1

1(t) v1
2(t) · · · v1

Nr
(t)

v2
1(t) v2

2(t) · · · v2
Nr

(t)
...

...
. . .

...
vN

1 (t) vN
2 (t) · · · vN

Nr
(t)

 = Q


w1

1(t) w1
2(t) · · · w1

Nr
(t)

w2
1(t) w2

2(t) · · · w2
Nr

(t)
...

...
. . .

...
wN

1 (t) wN
2 (t) · · · wN

Nr
(t)

 , (2.102)

so long as we ensured that N=Nr. To be able to solve each linear equation for all of the N2

spline coefficients, we picked Nr collocation points to give us a system of discrete equations
with the same number of equations as unknowns. At this point we had

Pν vν(tk+1/2) = Mν vν(tk) (2.103)

and
Pj(tk)w

j(tk+1) = Mj(tk)w
j(tk+1/2). (2.104)

Showing the matrices explicitly and simplifying the right-hand side, we represented these
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Step Input Perform this task... Output

1 w(t0) Multiply: Qw(t0) v(t0)
2 v(t0) Solve Pν vν(t1/2) = Mν vν(t0) for each ν v(t1/2)
3 v(t1/2) Multiply: Q−1 v(t1/2) w(t1/2)
4 w(t1/2) Solve Pj(t0)w

j(t1) = Mj(t0)w
j(t1/2) for each j w(t1)

5 w(t1) Multiply: Qw(t1) v(t1)
6 v(t1) Solve Pν vν(t3/2) = Mν vν(t1) for each ν v(t3/2)
7 v(t3/2) Multiply: Q−1 v(t3/2) w(t3/2)
8 w(t3/2) Solve Pj(t1)w

j(t2) = Mj(t1)w
j(t3/2) for each j w(t2)

...
...

...
...

4k+1 w(tk) Multiply: Qw(tk) v(tk)
4k+2 v(tk) Solve Pν vν(tk+1/2) = Mν vν(tk) for each ν v(tk+1/2)
4k+3 v(tk+1/2) Multiply: Q−1 v(tk+1/2) w(tk+1/2)
4k+4 w(tk+1/2) Solve Pj(tk)w

j(tk+1) = Mj(tk)w
j(tk+1/2) for each j w(tk+1)

...
...

...
...

Table 1: Steps for Time-Propagation of the Wavefunction

equations like so:
Pν

1 (r1) Pν
2 (r1) · · · Pν

Nr
(r1)

Pν
1 (r2) Pν

2 (r2) · · · Pν
Nr

(r2)
...

...
. . .

...
Pν

1 (rNr) Pν
2 (rNr) · · · Pν

Nr
(rNr)




vν
1 (tk+1/2)
vν

2 (tk+1/2)
...

vν
Nr

(tk+1/2)

 =


N ν(r1, tk)
N ν(r2, tk)

...
N ν(rNr , tk)

 (2.105)

and
Pj

1(r1, tk) Pj
2(r1, tk) · · · Pj

Nr
(r1, tk)

Pj
1(r2, tk) Pj

2(r2, tk) · · · Pj
Nr

(r2, tk)
...

...
. . .

...

Pj
1(rNr , tk) Pj

2(rNr , tk) · · · Pj
Nr

(rNr , tk)




wj
1(tk+1)

wj
2(tk+1)

...

wj
Nr

(tk+1)

 =


N j(r1, tk+1/2)
N j(r2, tk+1/2)

...
N j(rNr , tk+1/2)

 .
(2.106)

At this point we had figured out how to calculate an approximate solution of Schrödinger’s
equation using a two-step propagation. So starting at t0 = 0 with an initial antihydrogen
wavefunction, represented as a matrix of spline coefficients w(t0), we may now use a computer
program to propagate the wavefunction into the future using the steps shown in Table 1.
After following these steps, we will know vlpl

s (tk) for all times tk that interest us, and we can
finally calculate the probability of an antihydrogen atom being in a particular Rnl state:

Pnl(tk) =

∣∣∣∣∣
l∑

m=−l

2l∑
pl=0

Nr∑
s=1

Nr∑
i=1

ωiRnl(ri)
Ss(ri)

ri

Oplm v
lpl
s (tk)

∣∣∣∣∣
2

. (2.107)
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3 Computational Work

David Caballero wrote a computer program in the C programming language to propagate
discretized antihydrogen-in-a-laser-field wavefunctions over time and calculate the probabili-
ties at each time interval of the atom occupying certain states. The workings of the program
and its initial results are discussed in the following sections.

3.1 Program Description

The basic function of the program is to perform the steps listed previously in Table 1,
then calculate probabilities using Equation 2.107. It also calculates the inner product of
the wavefunction with itself 〈Ψ|Ψ〉 to allow us to see how well the wavefunction remains
normalized, and it calculates the average energy 〈E〉 of the antihydrogen atom and 〈E − h〉.
We must provide the program several sets of data before it can do its job, though. First of all,
we must choose how we will discretize the wavefunction. Depending on the computational
power of the computer on which the program is running, and depending on how long we
are willing to wait for the results, we have to determine: the number Ns of radial spline
nodes and thus the number N = Nr =3Ns−3 of discrete momentum states, angular points,
and radial collocation points; the size of the time interval ∆t; and the number of iterations
the program should perform before it stops. The number N determines the range of the
indices ν, j, and i, and the number of iterations determines the range of the index k. We
must also decide where the spline nodes should be located and which momentum states will
take precedence10. Once these decisions are made, the constants Opm are determined by
Gram-Schmidt orthonormalization, and the location of the collocation points, the location
of the angular points, and the weights wj and wi are determined by Gaussian quadrature
rules. Finally, we must supply an initial normalized wavefunction Ψinitial and choose the
Rnl states for which we want to find probabilities. The initial wavefunction may just as well
be one of the Rnl states, but whatever function we pick, we must know what its first and
second derivatives are so that we can calculate its spline representation w(t0). With all of
these decisions made, the program is free to calculate.

One matter about the method of calculation deserves further discussion, and that is the
solution of the matrix equations. Since Pj(tk) is time-dependent, it must be calculated for
each moment in time. If the period of ĥ(r, t) is divisible by ∆t, then there will be some
repitition of Pj(tk) over time. Since Pν is not time-dependent, it only needs to be calculated
once and used repeatedly. For all of these cases where we want to solve matrix equations
of the form Ax = b for multiple b vectors and the same matrix A, it is most efficient to
use LU factorization. If we factor A into a product of a permuted lower triangular matrix
L and an upper triangular matrix U , which is the echelon form of A, then the process of
solving Ax=LUx=b can be broken into the more managable processes of solving Ly =b
and then Ux = y. We take advantage of this technique by using either LAPACK (Linear
Algebra PACKage) or SuperLU, a program designed for sparse Gaussian elimination on high

10One general method of picking momentum states was discussed immediately before Equation 2.54, and
that is the method used in our recent run of the program that produced the results included here. We will
not discuss the method used for selecting the spline nodes. Suffice it to say that it takes a certain amount
of experience to hand-pick the appropriate points.
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performance computers.
The other feature of the program that is worth mentioning is that it may be run in

a parallel mode, where separate calculations are assigned to different processors. This is
due to the fact that each time a set of matrix equations are solved, whether it be solving N
equations of the form Pν vν(tk+1/2) = Mν vν(tk) orN equations of the form Pj(tk)w

j(tk+1) =
Mj(tk)w

j(tk+1/2), the set of N equations are independent. Thus, we may write code that
is, as they say, “embarrassingly parallel” to solve this problem. The rest of the details about
how the program was written and is organized are beyond the scope of this paper.

3.2 Results

We ran our code on a supercomputer called DataStar at the San Diego Supercomputing
Center at the University of California, San Diego and on an SGI computer called Atlantis
here at California State University, Long Beach. Personally, I was not able to run the
program on DataStar, but I was able to run it in serial mode on Atlantis. The resulting
data is included here from the runs I made on Atlantis. The initial state of the antihydrogen
atom is the 3s state, where n=3 and l=0.
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Iteration Time (atu) 〈Ψ|Ψ〉 P3,0 = | 〈Ψ|Ψinitial〉 |2 P1,0 = | 〈Ψ|1s〉 |2 P2,0 = | 〈Ψ|2s〉 |2

1 0.2824 1.0000000001600435 1.0000000000438676 6.9210938639514229e-11 3.0749096466587819e-11
10,000 1412.14 0.99999984397683239 0.99730264647522737 2.8990034021170673e-08 1.2229594963067767e-06
20,000 2824.14 0.99999996338419372 0.99956169618506296 6.8185178346502936e-08 6.0631182055602294e-07
30,000 4236.14 0.9999998664145997 0.99764679542926882 5.2625377303866976e-08 5.3017415127935915e-07
40,000 5648.14 0.99999986132807839 0.99876098684541892 8.4155120441696719e-09 1.6097558975076965e-06
50,000 7060.14 0.9999999031016189 0.99807732283024442 8.0267177415140301e-09 5.8034906145707176e-08
60,000 8472.14 0.99999977514256755 0.99826257539317753 5.2486253523814282e-08 1.6530061835498476e-06
70,000 9884.14 1.0000000005448675 0.99838957868162004 6.8027569042587192e-08 4.0301109198219256e-07
80,000 11296.1 0.99999980722273996 0.99810196451366184 2.9585147866093131e-08 6.7294896182846354e-07
90,000 12708.1 0.99999998564158443 0.99841849557861451 3.8721480763704593e-12 1.1420415109022723e-06
100,000 14120.1 0.99999985790725199 0.99824101968346957 2.822486613149762e-08 2.4603051681596989e-09
110,000 15532.1 0.99999994076868615 0.99800714470594898 6.8237222869642138e-08 1.3360556252437067e-06
120,000 16944.1 0.99999995289432486 0.9987183832592279 5.362564170013796e-08 5.4362927234720141e-07
130,000 18356.1 0.9999998432434577 0.99731019157380518 8.6536153000526723e-09 7.1760473924611183e-07
140,000 19768.1 0.9999999930543344 0.99914869721048472 7.6144643428316341e-09 1.5477581194716428e-06
150,000 21180.1 0.99999973435518164 0.99684851679539388 5.2133988231942534e-08 8.4488537996544332e-08

Table 2: This is the first of two tables that contain data for an antihydrogen atom starting in the 3s state. The data includes
the normalization of the wavefunction, transition probabilites to lower energy states and back to the original state, and average
energies (in the next table). The times in the second column are in atomic time units (atu), where one atu equals 2.418884×10−17

seconds. The value of one atu in terms of seconds is the same as the value of the reduced Planck’s constant h̄ in terms of Hartree-
seconds, where a Hartree Eh is a unit of energy given by Eh = h̄2/mea

2
0.
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Iteration Time (atu) P2,1 = | 〈Ψ|2p〉 |2 〈E − h〉 〈E〉
1 0.2824 0.0042467120211789723 -0.055525299063669153 -0.055525299063669153

10,000 1412.14 0.0043329880708483899 -0.055322682187297752 -0.055322749083048052
20,000 2824.14 0.0042739941932816387 -0.055493754090326489 -0.055493882662816608
30,000 4236.14 0.0042453723080727607 -0.055346643227296266 -0.055347247070501301
40,000 5648.14 0.0043655394959590263 -0.055427854667047409 -0.055428021997688696
50,000 7060.14 0.0041994621575397731 -0.055368554166993891 -0.055369751491163174
60,000 8472.14 0.0043608228518586993 -0.055389651382419483 -0.055390082891782211
70,000 9884.14 0.0042351100052539373 -0.055395342061034393 -0.055396435958346847
80,000 11296.1 0.0042863156813478503 -0.055363496788519165 -0.055364787665946789
90,000 12708.1 0.0043462310047777727 -0.055395775431166576 -0.055395912798885727
100,000 14120.1 0.0042222634106653745 -0.055346940794936066 -0.055347921650238781
110,000 15532.1 0.0043449687929037126 -0.055357207538570131 -0.055355956238290503
120,000 16944.1 0.0042529213066699427 -0.055386150273767552 -0.055385910559826217
130,000 18356.1 0.0042760011264214833 -0.055292283993705935 -0.055289441417259985
140,000 19768.1 0.0043540682203416382 -0.055413725220961309 -0.055413093031157115
150,000 21180.1 0.0041937725553593749 -0.055246323778901436 -0.055242100788608146

Table 3: This is the second of two tables that contain data for an antihydrogen atom starting in the 3s state.
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3.3 Analysis

The first thing to notice about the data is that the number of iterations is relatively small.
Although 150,000 iterations may seem large, given our time step of 0.2824 atomic time units
(atu) that only translates to a duration of about 21,000 atu, or one-half of a picosecond. On
later runs, we would like time scales of a few orders of magnitude larger. Secondly, we should
note that the wavefunction does remain approximately normalized, as it should. However,
the total probability of the atom occupying any one state is greater than one, or more
significantly, greater than 〈Ψ|Ψ〉. For instance, at t= 21180.1 atu, 〈Ψ|Ψ〉= 0.9999997, but
the sum of the probability that the atom is in the 3s state (0.9968485) and the probability
that the atom is in the 2p state (0.0041938) is 1.0010423. Even so, a comparison of the
individual probabilities makes sense. The wavefunction has a high probability of remaining
in its initial state of 3s up to this point in the simulation. The situation is that the atom
starts in a state where l=0, and it interacts with a photon of spin 1. The data shows that
if the atom does make a transition to a state of lower energy, it is much more likely to end
up in a state with l=1 than a state with l=0. The probability of the atom transitioning to
the 2p state remains at about 0.0043, which is several orders of magnitude larger than the
probability of the atom occupying the 2s state (about 10−7) or the 1s state (about 10−9). Of
course, the probabilities also drop off more for states that have energies that are further away
from the original energy: when the atom starts from an n=3 state, it is more likely that it
transitions to an n=2 state than an n=1 state. We need to do a more thorough analysis,
starting with a higher initial energy state and examining more transitions, to determine what
the larger, more predominant patterns are.

4 Conclusion

Before the full value of the techniques presented in this paper can be realized, and before
new insight can be provided by the resulting data, there must be a more thorough analysis of
transition probabilities. This run of the program was really a preliminary run for a more in-
depth investigation requiring many runs of the program with initial states approaching n=50
and having various angular momenta. After this kind of investigation is done, there will be
more information with which to justify moving on to the three-body scattering problem that
was mentioned in the introduction.

5 Acknowledgements

I would like to thank the whole research group with which I am affiliated via my advisor,
Dr. Chi Hu. Dave Caballero was very helpful by sharing his knowledge of and experience
with the supercomputers and his program and by replying to my incessant email inquiries.
Dr. Zoltan Papp kindly made himself available when I came with questions for him, and
Dr. Zvonko Hlousek helped me with my campus computer accounts and with my random
computer questions. Dr. Serguei Yakovlev spent hours with me discussing the finer points
of quantum mechanics and the center-of-mass coordinate change for the hydrogen atom. I
am grateful for the help each of you gave me so I could make progress in my understanding

33



of this research and execution of the computation. And of course Dr. Hu, whose patience,
encouragement, and instruction made possible my research at Long Beach and at CERN,
deserves the most thanks. Thank you for your support and for your recommendation that
helped me get accepted to graduate school!

This research was supported in part by NSF cooperative agreement SCI-0122272 through
TeraGrid resources provided by the San Diego Supercomputer Center.

References

[1] G. I. Marchuk: Methods of Numerical Mathematics, Springer-Verlag, New York, Heidel-
berg, and Berlin (1975) section 4.3.3.

34



6 Appendices

A Hydrogen Atom Solution

The solution of the wavefunction for a hydrogen atom in free space is important to
our solution of the wavefunction for an antihydrogen atom in a laser field. Specifically, it
is important because we want to use the energy eigenstates found in the hydrogen atom
solution to find the probability that the antihydrogen atom is in one of these states. In
this appendix we derive the solution for the hydrogen atom. We assume that we have an
electron and a proton together in empty, three-dimensional space. The electron has mass
m and charge −e, and the proton has mass M and charge e. There is no laser field in this
problem, as there is in our antihydrogen problem.

A.1 Center-of-Mass Coordinate Change

From classical mechanics, we are familiar with the fact that, in any inertial reference
frame, the dynamics of an isolated system of two charged point-particles may be described
in terms of the individual particles’ masses, charges, positions, and momenta or in terms
of a “center-of-mass particle” and a “reduced-mass particle” and their associated proper-
ties. These mathematically constructed particles arise from a mere change of variables
(and masses): given that particle 1 has mass m1, charge q1, position r1 with respect to
an “observing” reference frame, and momentum p1, and given that particle 2 has mass
m2, charge q2, position r2 with respect to the same frame, and momentum p2, we let
R = (m1r1 +m2r2)/(m1 +m2), M = m1 +m2, r = r1−r2, and 1/µ = 1/m1 +1/m2. Since
p1 = m1ṙ1 and p2 = m2ṙ2, p1 and p2 transform in a similar manner as r1 and r2 so that
P=MṘ and p=µṙ. Thus the Hamiltonian transforms from

H(r1, r2,p1,p2) =
|p1|2

2m1

+
|p2|2

2m2

− κ
q1q2

|r1 − r2|
(A.1)

to

H(R, r,P,p) =
|P|2

2M
+
|p|2

2µ
− κ

q1q2
|r|

. (A.2)

So, after the change of variables, we have a Hamiltonian that seems to be describing one
free particle at the center of mass R with mass M and momentum P and another particle at
the “relative” coordinate r with mass µ, called the reduced mass, and momentum p that is
affected by a central force proportional to q1q2. The vector R is defined with respect to the
lab frame, but the vector r is defined with respect to a “relative” frame that has its origin
located at particle 2. Since particle 2 accelerates with respect to the center of mass, the
relative frame accelerates with respect to the observing frame; thus the relative frame is not
inertial. This doesn’t matter, though, since we already know that our equations are true.
We shall call the vector space of coordinates associated with the observing frame R-space (or
r1-space or r2-space) and we shall call the space associated with the relative frame r-space.

Anyway, since the new Hamiltonian in Equation A.2 can be expressed as a sum of two
Hamiltonians, one that characterizes the center-of-mass particle and one that characterizes
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the reduced-mass particle, Hamilton’s equations determine that these particles do not in-
teract with each other. Instead, they behave independently of each other as if they were
in different superimposed universes. The center-of-mass particle moves with constant mo-
mentum and the reduced-mass particle follows some conic-section trajectory about the tail
of the r vector. Translating these trajectories back to the trajectories of the real particles
is simple: r1 = R+m2r/(m1+m2) and r2 = R−m1r/(m1+m2). We must realize, though,
that the momentum of the center-of-mass particle may take any classically possible value
and that the coordinate system of the vector r may be oriented in any manner with respect
to the coordinate system of vector R.

In the quantum mechanical two-body problem we may perform the same change of vari-
ables, except in this case it is also a change of operators. The vectors r1 and r2 no longer
represent the positions of the particles but instead act as eigenstates (|r1〉 and |r2〉) and
operators (r̂1 and r̂2) for position in coordinate space. The dynamics of the two particles are
no longer specified by curves in coordinate space (or configuration space or phase space) but
they are specified by a state vector |Ψ(t)〉 in a Hilbert space. The position operators r̂1 and
r̂2 and the momentum operators p̂1 and p̂2 act on state vectors in the given Hilbert space.
The change of operators takes the Hamiltonian to the same form as before:

Ĥ(R̂, r̂, P̂, p̂) =
|P̂|

2

2M
+
|p̂|2

2µ
− κ

q1q2
|r̂|

. (A.3)

Again, the Hamiltonian may be written as a sum of two particle-specific Hamiltonians:
Ĥ(R̂, r̂, P̂, p̂) = ĤR(R̂, P̂) + Ĥr(r̂, p̂). Picking a particular representation, say the represen-
tation with respect to the coordinate basis |R, r〉, gives us this Hamiltonian:

Ĥ(R, r) =
〈
R, r

∣∣∣Ĥ∣∣∣R, r〉 = − h̄
2∇R

2

2M
− h̄2∇r

2

2µ
− κ

q1q2
|r|

, (A.4)

where the laplacian ∇R
2 differentiates with respect to coordinates in R-space and similarly

for ∇r
2. Of course, the wavefunction for the two particles, expressed in the coordinate space

basis, changes from Ψ(r1, r2, t) to Ψ(R, r, t). Solving Schrödinger’s equation in this new
basis,

Ĥ(R, r) Ψ(R, r, t) = ih̄
∂

∂t
Ψ(R, r, t), (A.5)

enables us to use the technique of separation of variables, where Ψ(R, r, t)=χ(R)ψ(r) τ(t).
We shall call χ the center-of-mass wavefunction, ψ the relative wavefunction, and τ the time
wavefunction. With separated variables, we may rearrange the equation: if[

ĤR(R) + Ĥr(r)
]
χ(R)ψ(r)τ(t) = Ê χ(R)ψ(r)τ(t),

then functions unaffected by certain operators may commute with those certain operators
like so,

ψ(r)τ(t) ĤR(R)χ(R) + χ(R)τ(t) Ĥr(r)ψ(r) = χ(R)ψ(r) Ê τ(t),

and if we divide by χ(R)ψ(r) τ(t), then we have

1

χ(R)
ĤR(R)χ(R) +

1

ψ(r)
Ĥr(r)ψ(r) =

1

τ(t)
Ê τ(t).

36



Since R, r, and t are independent variables and are separated into individual terms, varying
one of them at a time will not affect the value the other two terms; so each term must equal
a constant. That implies that each of the wavefunctions are energy eigenstates. Let’s call
the eigenvalues of χ, ψ, and τ ER, Er, and Et, respectively. Then Et =ER+Er and we have
three resulting equations:

ĤR(R)χ(R) = − h̄2∇2

2M
χ(R) = ER χ(R) (A.6)

Ĥr(r)ψ(r) =
[
− h̄2∇2

2µ
− κ q1q2

r

]
ψ(r) = Er ψ(r) (A.7)

Ê τ(t) = ih̄ ∂
∂t
τ(t) = Et τ(t). (A.8)

The solutions of Equations A.6 and A.8 should be familiar to us:

χ(R) = (2π)−3/2eiP·Rh̄, (A.9)

where P is any momentum vector such that P 2/2M = ER, and

τ(t) = e−iEtt/h̄. (A.10)

Since Et =ER+Er, τ may be expressed as the product two exponentials τR(t)=exp(iERt/h̄)
and τr(t) = exp(iErt/h̄), each of which may naturally couple by multiplication with their
respective coordinate wavefunctions. So the three equations are essentially two independent
time-dependent Schrödinger equations - one for each particle. The center-of-mass wavefunc-
tion has been given the coefficient (2π)−3/2 so that its Fourier transformations are symmet-
rical:

χ(P) = (2π)−3/2

∫
R

χ(R) e−iP·R/h̄ dR,

χ(R) = (2π)−3/2

∫
P

χ(P) eiP·R/h̄ dP.

The time wavefunction has been normalized with a coefficient of unity for the sake of sim-
plicity. With these solutions, however, the overall wavefuncion Ψ cannot be normalized:

〈Ψ|Ψ〉 =

∫
all R

∫
all r

|Ψ(R, r, t)|2 dR dr

=

∫
all R

∫
all r

|χ(R)|2 |ψ(r)|2 |τ(t)|2 dR dr

= |τ(t)|2
∫

all R

|χ(R)|2 dR
∫

all r

|ψ(r)|2 dr

= 1

∫
all R

1

2π
dR

∫
all r

|ψ(r)|2 dr

= ∞
∫

all r

|ψ(r)|2 dr

Since there’s a nonzero probability of finding the center-of-mass at every point in R-space,
the integral of |χ|2 diverges; thus we cannot meaningfully ask questions about where the
center-of-mass particle or the reduced-mass particle are located. We can, however, ask
about probabilities associated with energy states and momentum states.
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If we make the assumption that the center of mass behaves classically, like a point particle
compared to the reduced mass particle, then integrating |ψ|2, where ψ is normalized, does
relate to the position of the reduced mass particle with respect to the center of mass and
thus it relates to the positions of the two original particles with respect to the center of mass.
As in the classical case, the momentum of the center-of-mass particle may take any possible
value and that the coordinate system of the vector r may be oriented in any manner with
respect to the coordinate system of vector R. This assumption of classical behavior of the
center of mass is approximately true in the case where the two original particles are a proton
and an electron. Since the proton is about 2000 times more massive than the electron,
it is essentially immobile in the center-of-mass frame, and the center of mass is located
approximately at the same position as the proton. We will not concern ourselves with the
positions of the particles and how accurate this approximation is, but we will normalize ψ.
Now all that remains is to solve Equation A.7 for the relative wavefunction ψ.

A.2 The Relative Wavefunction

Since the potential of Hr is spherically symmetric, we will work in spherical coordinates,
where the Hamiltonian Hr takes the form

Ĥr(r) = − h̄
2

2µ
∇2 − κ

e2

r

= − h̄
2

2µ

[
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)]
− κ

e2

r
,

where θ is the polar angle measured from the z-axis ranging from 0 to π and φ is the azimuthal
angle in the xy-plane ranging from 0 to 2π. Since

L̂2 = −h̄2

(
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
, (A.11)

we can simplify Hr further:

Ĥr(r) = − h̄
2

2µ

[
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
−L̂

2

h̄2

)]
− κ

e2

r

= − h̄
2

2µ

∂2

∂r2
− h̄2

µr

∂

∂r
+

L̂2

2µr2
− κ

e2

r
. (A.12)

We may now solve Equation A.7 for the relative wavefunction ψ in spherical coordinates.
To simplify notation, we will let Er =E. To keep track of the constants and quantities that
characterize the solutions, we will add subscripts of these constants to the functions; so we
have ψE.

We may employ the separation of variables technique and separate ψE into a product of
functions of the radial and the angular coordinates. So, let

ψE(r) = R(r)Y (Ω), (A.13)
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where Ω represents both θ and φ. So far, we don’t know if both R and Y depend upon E or
if only one of them does, so we’ll leave the subscripts undetermined for now. Since ψE =RY
is normalized, we know this:

1 =

∫ ∫ ∫
all space

|R(r)Y (Ω)|2dV

=

(∫ ∞

0

|R(r)|2r2dr

)(∫
all angles

|Y (Ω)|2dΩ
)
. (A.14)

where dΩ = sinφ dφ dθ. Declaring both integrals in Line A.14 to be unity, we have thus
obtained expressions for independent probabilities in the radial and angular coordinates.
We have also placed further restrictions on the solutions of R and Y with this declaration.

A.3 Spherical Harmonics

An additional consequence of the potential’s spherical symmetry is that there is no torque
acting on the reduced-mass particle, so the angular momentum of the system must be con-
stant. That means ψE is an eigenfunction of the angular momentum operator L̂. Of course,
that means ψE is also an eigenfunction of L̂2. Furthermore, since L̂ and L̂2 only affect func-
tions of angular coordinates, it is really the function Y within ψE that is the eigenfunction;
the radial function R is unaffected by the operators.

If we call the eigenvalue of the squared angular momentum operator γ, then

L̂2 Yγ(θ, φ) = γ Yγ(θ, φ). (A.15)

Solutions to this equation are called spherical harmonics. Given Equation A.11, we can
solve for Yγ using another round of separation of variables. By the way, since the energy E
does not appear in this equation, Yγ does not depend on E. Letting Yγ(θ, φ) = Θ(θ) Φ(φ),
Equation A.15 becomes

−h̄2

(
Θ′′(θ) Φ(φ) +

cos θ

sin θ
Θ′(θ) Φ(φ) +

1

sin2 θ
Θ(θ) Φ′′(φ)

)
= γΘ(θ) Φ(φ), (A.16)

or, rearranged,

sin2 θ
Θ′′(θ)

Θ(θ)
+ sin θ cos θ

Θ′(θ)

Θ(θ)
+

γ

h̄2 = −Φ′′(φ)

Φ(φ)
. (A.17)

As both sides are independent, each side must equal a constant; we call that constant
m2. (Negative values do not yield physical solutions.) Thus, we have two equations. The
azimuthal differential equation implies Φm(φ) = eimφ, where m must be an integer, positive
or negative, to ensure that Φm is periodic of period 2π. If we try a negative constant instead
of m2, then the solution for Φ is not cyclic, as it needs to be. These solutions Φm result in
the relation

L̂z Yγm(Ω) = mh̄Yγm(Ω). (A.18)

The remaining polar differential equation involves both γ and m. After several tricky steps,
which we will unfortunately not cover here, one finds that the solutions for Θγm are the
Legendre polynomials and associated Legendre polynomials with the complication that the
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Legendre polynomials Pl (Pm
l ,m = 0) Associated Legendre polynomials Pm

l

Pl(x) = 1
2ll!

dl

dxl (x
2 − 1)l Pm

l (x) = (1− x2)|m|/2 d|m|

dx|m|Pl(x)

P0(cos θ) = 1
P1(cos θ) = cos θ P 1

1 (cos θ) = sin θ
P2(cos θ) = (3 cos2θ − 1)/2 P 1

2 (cos θ) = 3 cos θ sin θ
P 2

2 (cos θ) = 3 sin2θ
P3(cos θ) = (5 cos3 θ − 3 cos θ)/2 P 1

3 (cos θ) = 3 sin θ(5 cos3θ − 1)/2
P 2

3 (cos θ) = 15 sin2θ cos θ
P 3

3 (cos θ) = 15 sin3θ

Table 4: Legendre and associated Legendre polynomials: These functions are the solutions
for Θ(θ) and happen to be orthogonal.

Ylm(θ, φ) = Nlm P
m
l (cos θ) eimφ Nlm = (−1)m

√(
2l+1
4π

) (l−|m|)!
(l+|m|)!

Ylm (m = 0) Ylm (m 6= 0, |m| ≤ l)

Y0,0(θ, φ) = 1√
4π

Y1,0(θ, φ) =
√

3
4π

cos θ Y1,±1(θ, φ) = ∓
√

3
8π

sin θ e±iφ

Y2,0(θ, φ) =
√

5
16π

(3 cos2θ − 1) Y2,±1(θ, φ) = ∓
√

15
8π

cos θ sin θ e±iφ

Y2,±2(θ, φ) =
√

15
32π

sin2θ e±2iφ

Y3,0(θ, φ) =
√

7
16π

(3 cos θ − 5 cos3 θ) Y3,±1(θ, φ) = ∓
√

21
64π

(1− 5 cos2θ) sin θ e±iφ

Y3,±2(θ, φ) =
√

105
32π

cos θ sin2θ e±2iφ

Y3,±3(θ, φ) = ∓
√

35
64π

sin3θ e±3iφ

Table 5: Normalized spherical harmonics: Ylm(θ, φ) = Θlm(θ)Φm(φ)

polynomials take cos θ as their arguments rather than θ. These polynomials are shown
in Table 4. Given a polynomial solution of degree k ≥ 0, the eigenvalue becomes γ =
(k + |m|)(k + |m|+ 1)h̄2. If we define l ≡ k + |m|, then we find

γ = l(l + 1)h̄2, (A.19)

where the degree of the polynomial solution is l − |m|, l ≥ 0, and |m| ≤ l. The number
l, which takes on integer values, is known as the azimuthal or orbital or angular quantum
number, and m is known as the magnetic quantum number. From here on forward, instead of
using the subscripts γ and m, we will use l and m. See Table 5 for the normalized spherical
harmonics.
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A.4 Laguerre Polynomials

Now we may solve for the radial wave function R. Rewriting Equation A.7, we have that[
− h̄

2

2µ

∂2

∂r2
− h̄2

µr

∂

∂r
+

L̂2

2µr2
− κ

e2

r

]
R(r)Ylm(Ω) = E R(r)Ylm(Ω), (A.20)

and using the eigen-nature of Y , this means

Ylm(Ω)

[
− h̄

2

2µ

∂2

∂r2
− h̄2

µr

∂

∂r
+
l(l + 1)h̄2

2µr2
− κ

e2

r

]
R(r) = E R(r)Ylm(Ω). (A.21)

If we divide by Ylm(Ω), then we’ll have the differential equation for R alone, and we can
easily see that the solutions for R are dependent upon the values of both E and l. So, let
these quantities appear as subscripts on R. Then, after dividing by Ylm(Ω) (no need for the
partials anymore) and multiplying by r, we get[

− h̄
2

2µ

(
r
∂2

∂r2
+ 2

∂

∂r

)
+ r

(
l(l + 1)h̄2

2µr2
− κ

e2

r

)]
REl(r) = rE REl(r), (A.22)

which is the same as[
− h̄

2

2µ

d2

dr2
+

(
l(l + 1)h̄2

2µr2
− κ

e2

r

)]
rREl(r) = E rREl(r). (A.23)

Then, if we make the substitution UEl(r) ≡ rREl(r), we simply have[
− h̄

2

2µ

d2

dr2
+
l(l + 1)h̄2

2µr2
− κ

e2

r

]
UEl(r) = E UEl(r). (A.24)

Before we move on to solve for UEl, though, let’s see how it fits into the scheme of things.
We declared in Line A.14 the expression for finding the radial-dependent probabilities of the
wavefunction. Now we can see that it is natural to look at the function UEl(r) = rREl(r)
because its magnitude squared is the radial probability density:

1 =

∫ ∞

0

|REl(r)|2r2dr =

∫ ∞

0

|UEl(r)|2dr. (A.25)

Okay, now let’s solve for UEl(r). It appears that we are solving a one-dimensional particle-
in-a-potential problem, where the domain is from zero to infinity and the potential (in Equa-
tion A.24) has an attractive Coulomb part and a repulsive centrifugal part that depends on
the angular momentum. We will have to do some investigation to find the boundary con-
straints on UEl(r). Let’s call the operator in Equation A.24 D̂ so that D̂UEl =EUEl. We
want to find solutions such that D̂ is Hermitian with respect to them. So if we have two so-
lutions Ua and Ub, then 〈Ua|D̂Ub〉 = 〈Ua|D̂|Ub〉 = 〈Ub|D̂†|Ua〉∗ = 〈Ub|D̂|Ua〉∗ = 〈Ub|D̂Ua〉∗ =
〈D̂Ua|Ub〉, or ∫ ∞

0

Ua
∗(D̂Ub) dr =

∫ ∞

0

(D̂Ua)
∗Ub dr. (A.26)

41



Plugging in the explicit form of D̂ and simplifying, we get∫ ∞

0

Ua
∗
(
d2

dr2
Ub

)
dr =

∫ ∞

0

(
d2

dr2
Ua

)∗
Ub dr, (A.27)

or ∫ ∞

0

Ua
∗ d

(
d

dr
Ub

)
=

∫ ∞

0

Ub d

(
d

dr
Ua

∗
)
. (A.28)

Using integration by parts (and the notation U ′ = dU/dr), this is the same as

[Ua
∗ Ub

′]
∞
0 −

∫ ∞

0

Ua
∗′ Ub

′ dr =
[
Ub Ua

∗′]∞
0
−
∫ ∞

0

Ub
′ Ua

∗′ dr, (A.29)

or, more simply, [
Ua

∗ Ub
′ − Ub Ua

∗′]∞
0

= 0. (A.30)

Since any solution UEl must be square-integrable (see Equation A.25), UEl must go to zero
as r goes to infinity, so the expression in brackets in Equation A.30, evaluated at infinity, is
zero. Thus the expression must also be zero at r = 0.

If any solution UEl approaches a constant c 6= 0 as r approaches zero, then

ψ(r) = REl(r)Ylm(θ, φ) =
UEl(r)

r
Ylm(θ, φ) ∼ c

r
Ylm(θ, φ) (A.31)

near r = 0. However, this does not satisfy the time-independent Schrödinger equation
(Equation A.20) because the Laplacian (which is broken into two terms in Equation A.20)
generates a Dirac delta: ∇2(1/r) = −4πδ(r). So UEl must approach zero as r goes to zero.
That result also takes care of the relation in Equation A.30.

Looking again at the differential equation that describes UEl (Equation A.24), we can
find out more about the character of the solutions by examining the equation near the
boundaries. Here’s the equation again, rearranged:

UEl
′′(r) =

[
−2µE

h̄2 +
l(l + 1)

r2
− 2µκe2

r

]
UEl(r). (A.32)

As r approaches zero, the centrifugal term will dominate, thus, near zero,

UEl
′′(r) ' l(l + 1)

r2
UEl(r). (A.33)

This suggests that, near zero, UEl is similar to rα, where α(α−1) = l(l+1); that is, α = (l+1)
or (−l). Since one of our boundary conditions is that UEl be equal to zero at r = 0, we can
only accept α = (l + 1), so

UEl(r) ∼ rl+1 (A.34)

near zero. As r goes to infinity, we have

UEl
′′(r) ' −2µE

h̄2 UEl(r). (A.35)
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For bound states, where E < 0, we conclude that

UEl(r) ∼ exp

[
−
√
−2µE/h̄2 r

]
(A.36)

for large r. We’ll let λ =
√
−2µE/h̄2 to simplify that expression. So now we know what

UEl looks like as it approaches its boundaries, but what goes on in between?
We shall make an assumption about UEl: that it can be expressed as a the product of

the two boundary functions, rl+1 and e−λr, and some polynomial or power series in r. Let
that polynomial be called p(r) and let

p(r) =
∞∑

j=0

ajr
j. (A.37)

If we plug our proposed solution UEl(r) = rl+1e−λrp(r) back into the differential equation
describing UEl (Equation A.24) and simplify, then we have

p′′ + 2

(
l + 1

r
− λ

)
p′ + 2

(
µκe2/h̄2 − λ(l + 1)

r

)
p = 0, (A.38)

where we now see that the solutions for p depend on E (through λ) and l. So we have pEl.
Since pEl

′(r) =
∑∞

j=0(j + 1)aj+1r
j and pEl

′′(r) =
∑∞

j=0(j + 2)(j + 1)aj+2r
j, Equation A.38

gives us

∞∑
j=0

[
(j + 2)(j + 1)aj+2r

j + 2(l + 1)(j + 1)aj+1r
j−1

−2λ(j + 1)aj+1r
j + 2

(
µκe2/h̄2 − λ(l + 1)

)
ajr

j−1
]

= 0. (A.39)

Note that in this sum there are only two terms with r−1, but there are four terms with each
successive power of r. If we collect all terms with the same power of r, then each resulting
coefficient must be equal to zero for the entire sum to be zero. That leads to the fact that
we can use an equation for each coefficient to obtain relationships between the an’s. For the
first coefficient, the equation looks like this: 2(l+1)(j+1)aj = 2[λ(l+1)−κe2µ/h̄2]aj−1 for
j = 0. For all other coefficients (j ≥ 1), we obtain a recurrence relation that looks like this:

j(j + 2λ+ 1)aj = 2[λ(j + l)− µκe2/h̄2]aj−1. (A.40)

It just so happens that this agrees with the first equation, so this relation is true for all
j ≥ 0.

So what does this recurrence relation tell us? Well, if we want to check to see if our
proposed UEl(r) behaves like it should at the boundaries, now we can. The boundary of
r approaching zero is fine since pEl(r) will only approach a constant a0, allowing UEl to
approach zero as it should. We still have to check the behavior of the polynomial when r is
large, though. As r approaches infinity (or whenever r is larger than 1) the coefficients of

43



the larger powers of r have the most influence on the behavior of pEl(r). Let’s see what the
recurrence relation for the coefficients looks like for large powers of r:

lim
j→∞

aj = lim
j→∞

(
2[λ(j + l)− µκe2/h̄2]

j(j + 2λ+ 1)
aj−1

)
=

2λ

j
aj−1. (A.41)

So, the larger the power of r, the more the coefficients obey this recurrence relation. This
relation, though, is the same as the recurrence relation for the coefficients of e2λr. So for
large r, if we assume that pEl(r) is an infinite polynomial then it behaves like e2λr, and

UEl(r) ∼ rl+1e−λre2λr ∼ eλr. (A.42)

But this contradicts the requirement that UEl(r) behave as e−λr for large r. That means pEl

cannot be an infinite polynomial; it must terminate at some point. In this case, pEl(r) will
not affect our requirement that UEl(r) be dominated by e−λr for large r.

Assuming pEl(r) is a finite polynomial, there must be some coefficient aN+1 that equals
zero, where N ≥ 0. The recurrence relation (Equation A.40) will guarantee that all following
coefficients will be zero as well. The relation also implies that

λ(N + 1 + l)− µκe2/h̄2 = 0. (A.43)

If we define n ≡ N + l + 1 and recall that λ =
√
−2µE/h̄2, then this is equivalent to the

relation

E = −µκ
2e4

2h̄2

1

n2
. (A.44)

This looks familiar, doesn’t it? Since n is now synonymous with E, we shall substitute n
for the subscript E. Here, n is called the principal quantum number and N is called the
radial quantum number. By the relations and definitions presented so far, we have that
0 ≤ l ≤ n− 1, and n ≥ 1. So, given a particular value of n, there are n values for l to take.
Remember also that for a given value of l, there are 2l+1 values for m to take since |m| ≤ l.
In total, then, for each energy state with its particular value of n, there are n2 combinations
of the quantum numbers l and m.

Let’s get back to the matter of the coefficients of pnl. We have determined that pnl

is a finite polynomial of degree N = n− 1− l, and we know a recurrence relation that
can produce all coefficients given any one coefficient. We also have the condition that the
function Unl(r) = rl+1e−λrpnl(r), when squared and integrated over the domain of r, yields
unity. Since squaring Unl(r) will only lead to more polynomials multiplied by exponentials,
and since we know

∫∞
0
rnear = n!/an+1, we can conclude that it is possible to find all

coefficients such that Unl is normalized. The unnormalized solutions for pnl, which are called
the Laguerre polynomials and associated Laguerre polynomials, are shown in Table 6.

It is convenient to use a constant a0 called Bohr’s radius, where a0 = h̄2/µκe2, in the
radial solutions. With this constant, λ=1/na0 and

E = −κe
2

2a0

1

n2
. (A.45)

Table 7 presents the normalized radial solutions in terms of Bohr’s constant.
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Laguerre polynomials Li (Lj
i , j = 0) Associated Laguerre polynomials Lj

i

Li(r) = er di

dri (r
ie−r) Lj

i (r) = dj

drjLi(r)
L0(r) = 1
L1(r) = 1− r L1

1(r) = −1
L2(r) = 2− 4r + r2 L1

2(r) = −4 + 2r
L2

2(r) = 2
L3(r) = 6− 18r + 9r2 − r3 L1

3(r) = −18 + 18r − 3r2

L2
3(r) = 18− 6r

L3
3(r) = −6

Table 6: Laguerre and associated Laguerre polynomials: These functions are the solutions
for pnl(r) and happen to be orthogonal.

Rnl(r) = Nnl

(
2r

na0

)l

e−r/na0 L2l+1
n+l

(
2r

na0

)
Nnl = −

[(
2

na0

)3
(n−l−1)!

2n[(n+l)!]3

]1/2

Rnl (l = 0) Rnl (1 ≤ l ≤ n− 1)

R1,0(r) = 1

2
√

a0
3
e−r/a0

R2,0(r) = 1√
2a0

3

(
1− r

2a0

)
e−r/2a0 R2,1(r) = 1√

6a0
3

(
r

2a0

)
e−r/2a0

R3,0(r) = 2

3
√

3a0
3

(
1− 2r

3a0
+ 2r2

27a0
2

)
e−r/3a0 R3,1(r) = 8

9
√

6a0
3

(
1− r

6a0

)(
r

3a0

)
e−r/3a0

R3,2(r) = 4

9
√

30a0
3

(
r

3a0

)2

e−r/3a0

Table 7: Normalized radial solutions: Rnl(r) = rle−λrpnl(r).
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So, finally we have the solutions for the bound states of the hydrogen atom. Ψ(R, r, t)=
χ(R)ψ(r) τ(t), where χ and τ were given earlier in Equations A.9 and A.10, respectively,
and

ψ(r) = Rnl(r)Ylm(Ω) (A.46)

=
1

r
Unl(r) Θlm(θ) Φm(φ) (A.47)

= Nnl

(
2r

na0

)l

e−r/na0 L2l+1
n+l

(
2r

na0

)
Nlm P

m
l (cos θ) eimφ, (A.48)

where

Nnl = −

[(
2

na0

)3
(n− l − 1)!

2n[(n+ l)!]3

]1/2

(A.49)

and

Nlm = (−1)m

√(
2l + 1

4π

)
(l − |m|)!
(l + |m|)!

(A.50)

B Spline Equations

In section 2.2.4, we presented fifth degree splines and the boundary conditions that the
splines fulfill, and we even graphed examples of them. However, the formulae for the quintic
splines were not shown in that section. They are shown below:

Sι00(r) = −(r − rι−1)
3(6r2 + rι−1

2 + rι−1(3r − 5rι)− 15rrι + 10rι
2)

(rι−1 − rι)5
(B.1)

Sι01(r) =
(r − rι+1)

3(6r2 + 10rι
2 + 3rrι+1 + rι+1

2 − 5rι(3r + rι+1))

(rι − rι+1)5
(B.2)

Sι10(r) = −(r − rι−1)
3(3r + rι−1 − 4rι)(r − rι)

(rι−1 − rι)4
(B.3)

Sι11(r) = −(r − rι)(r − rι+1)
3(3r − 4rι + rι+1)

(rι − rι+1)4
(B.4)

Sι20(r) = −(r − rι−1)
3(r − rι)

2

2(rι−1 − rι)3
(B.5)

Sι21(r) =
(r − rι)

2(r − rι+1)
3

2(rι − rι+1)3
(B.6)

C Antimatter Theory

This appendix is a short note to those who are unfamiliar with antimatter. Basically,
each elementary particle has a corresponding “antiparticle,” a particle which is essentially
exactly like the original particle except that it has opposite charge. The antiparticle version
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of the electron is called the positron, and it has the same mass as the electron and same
magnitude of charge, but it is positively charged. Antiprotons have negative charge and
are made out of the antiquarks that correspond to the quarks in a proton. This change in
sign of charge from particle to antiparticle is all that is important to the particular problem
presented in this paper. We could just as easily be talking about the hydrogen atom rather
than the antihydrogen atom, but we refer to the antimatter version to keep in mind the
experimental application with which we are interested. Much more could be said about
antimatter, such as annihilation of particles with antiparticles, and about particle physics in
general, but it is unnecessary for the problem at hand.
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