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Abstract

We use a computer program to make correlations between various
parameters of a bilayer quantum Hall system. We first introduce the
regular, classical Hall effect, the quantum Hall effect, and the bilayer
quantum Hall system. Then we describe the information gathered
with the program. From the original work and data, we conclude
that the bilayer conductivities σ00 and σzz are fully dependent on the
order parameter M0, where σ00 = σL−σL2 and σzz = σL +σL2. (σL

is the longitudinal conductance within a single layer and σL2 is the
longitudinal conductance between layers.) The program is determined
to be accurate and useful, and we conclude that we can model the
experimental bilayer transition of large d/l to small d/l by changing
the order parameter (which varies with disorder and filling factor), as
was done with the program. (d is the distance between the layers and
l is the magnetic length.)
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1 Introduction

The quantum Hall effect (QHE) is an intriguing macroscopic phenomenon
involving dissipationless current and the quantization of Hall conductance.
It occurs in two-dimensional electron systems at very low temperatures (T ≈

5mK) and in the presence of strong perpendicular magnetic fields (B≈ 5-20
Tesla). As a topic in solid state physics, it has been spurring a great deal of
experimental and theoretical research in the past quarter century and con-
tinues to provide material for new theories and mathematical applications.
Aside from the intellectual challenges and pleasures it supplies, its practical
applications merit the attention it has received. The values of the quantized
Hall conductance are so accurate as integer multiples of e2/h (by about one
part in 108) that they have become used in international standards for resis-
tance. (e is the electron charge and h is Planck’s constant.) Conveniently, the
fine-structure constant, α=e2/h̄c (in cgs units), which measures the strength
with which subatomic particles interact with each other and with light, is
measured relatively easily using this technique as well, since c is defined ex-
actly. And since the two-dimensional systems under study are realized with
semiconductor heterojunctions, the QHE has importance for the computing
industry in its quest to know everything about semiconductors.

There are actually two types of quantum Hall effects: the integer quantum
Hall effect (IQHE) and the fractional quantum Hall effect (FQHE). On the
surface, the only noticeable differences between the two effects are that the
FQHE results in fractional rather than integer multiples of e2/h for Hall
conductance and requires a stronger magnetic field, lower temperatures, and
a sample with fewer impurities. However, the theoretical explanations for
how each effect arises from physical laws are quite different. We deal only
with the integer QHE in this paper. In fact, we focus on a special case of
the QHE in which two parallel, two-dimensional electron gases (2DEGs) are
situated close together, instead of the ordinary case of just one 2DEG. This
case is interesting because of the quantum behavior of the electrons as they
inhabit and interact in both of the layers.

The original work that we have done on this topic involves the use of a
program (written by Yogesh Joglekar in C) to model the bilayer quantum Hall
system and calculate relationships among various parameters, particularly in
regions that are more difficult to evaluate analytically. So the purpose of
this paper is to introduce the bilayer quantum Hall system and describe the
information gathered with the program. Thus there are two main sections
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entitled The Theory and The Program.

2 The Theory

2.1 Classical Hall Effect

So, how does a bilayer quantum Hall system work? Before answering that,
a little background is in order. Before the quantum Hall effect, there came the
ordinary, classical Hall effect, which was discovered by Edwin Hall in 1879. In
his investigation, Hall applied a voltage VL (see Figure 1.) across a thin, flat
ribbon of conducting material such that a current I was directed lengthwise,
or longitudinally through the ribbon. He placed the ribbon in a magnetic
field B oriented perpendicularly to its flat surface. With this situation, the
charge carriers (electrons) are deflected by the Lorentz force FB, and they
begin to create a potential difference transversely across the conductor. The
transverse electric field associated with this potential difference also creates
a force FE that acts on the electrons and quickly grows to equilibrate with
the Lorentz force, allowing electrons to flow without being deflected. This
behavior of the electrons under these conditions is called the Hall effect1.
The equilibrated transverse potential difference is called the Hall voltage VH ,
and the Hall resistance RH is defined by VH =IRH . Hall conductance GH is
defined as 1/RH , and the longitudinal resistance RL is defined by VL =IRL.

The mathematics describing this equilibrium situation can be represented
by vectors and matrices:

~E =

[

Ex

Ey

]

= ρ~ =

[

ρxx ρxy

ρyx ρyy

] [

jx

jy

]

, (1)

where ~E is the electric field vector, ρ is the resistivity tensor, and ~ is the
current density vector. What is measured in experiments is not the electric
field or the resistivities, but rather the voltages and resistances. However,
since we deal with uniform conductors, the resistivities and electric fields
are related to the measurables by simple multiplicative factors, which are
determined by the dimensions of the ribbon. (If l is the length of the ribbon,
w is the width, t is the thickness, and A=wt is the cross-sectional area looking

1Hall’s discovery was inspired by the mistaken claim James Clerk Maxwell made that
“the mechanical force which urges a conductor ... acts, not on the electric current, but on
the conductor which carries it.”[1]
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Figure 1: Setup for the classical Hall effect. With the system not yet in
equilibrium (left), electrons are deflected. In equilibrium (right), there is no
transverse current and the Hall voltage is attained. (Although not shown on
the right, the magnetic field and longitudinal voltage are still applied.)

longitudinally at the ribbon, then Ex = VL/l, Ey = VH/w, ρxx = RL/Al, and
ρyx =RH/Aw.)

All samples we shall consider are essentially uniform and rotationally
invariant, so if we apply a voltage in the x direction and measure the current
in that direction, we would expect the same result if we turned the sample
and did likewise in the y direction. Thus ρxx =ρyy. If we see an effect in the
y direction due to voltage applied in the x direction, we would also expect
a voltage applied in the y direction would produce the same effect in the
negative x direction. Therefore, the resistivity tensor becomes

ρ =

[

ρxx −ρyx

ρyx ρxx

]

. (2)

Since the transverse current, and thus jy, is zero when the system is in
equilibrium, equation (1) simplifies to

[

Ex

Ey

]

=

[

ρxxjx

ρyxjx

]

. (3)

This is analogous to the equations mentioned earlier defining longitudinal
and Hall resistances, so we shall use the same names and subscripts for the
resistivities and electric field components: ρxx = ρL, ρyx = ρH , Ex =EL, and
Ey =EH . Furthermore, summing the magnetic and electric forces to get a net
transverse force of zero on a given electron shows that Ey =vxB=Bjx/(nec)
(in cgs units), where vx is the longitudinal velocity of the electrons, n is the
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areal density of electrons, e is the charge of the electron, and c is the speed
of light. Comparing this with the previous equation (specifically, Ey =ρHjx)
leads to the conclusion that ρH , and thus RH , is proportional to B. (RH =
(Aw/nec)B.) We shall see how this changes in the QHE case.

2.2 Quantum Hall Effect

Now, an introduction to the regular monolayer quantum Hall effect should
occur before analyzing the bilayer configuration. The QHE was discovered
by Klaus von Klitzing in 19802 [3]. He found that the setup for the Hall
effect, when put to extremes, held unexpected and interesting characteristics.
When the electrons are restricted to a conducting “ribbon” that is about 10
nm thick, when the magnetic field’s strength is increased to about 5 Tesla
or more, and when the system’s temperature is lowered to about 1 Kelvin or
less, the Hall conductivity is observed to take on values that are extremely
precise integer multiples of e2/h and the longitudinal conductivity becomes
essentially zero. Experimental data can be seen in Figure 2 [4], on page 13.

As mentioned in the introduction, a semiconductor heterojunction pro-
vides the “ribbon” in which the electrons can flow. A heterojunction is simply
the interface of two different semiconductors, and the potential energy dip of
the junction creates a thin “quantum well” situation. With the temperature
so low, the electrons do not have enough energy to escape this well. Even
though the layer that the electrons inhabit and freely move around in does
have some thickness, it can effectively be considered a 2-D system containing
a 2-D electron gas (2DEG). And with this low dimensionality comes a new
relation between resistance and resistivity. Since R=ρL(2−d) for a conductor
of d dimensions and side length L, amazingly, R=ρ for a 2-D L×L system.
The same goes for conductance and conductivity. In actuality, the interface
does not even have to be square for this relation to hold.

To consider the mathematical representation, since it’s the conductivity
that is quantized, we shall start with an equation containing conductivity
rather than resistivity:

~ =

[

jx

jy

]

= σ ~E =

[

σxx σxy

σyx σyy

] [

Ex

Ey

]

, (4)

2February 5th, 2 a.m. [2]

04 - 5



where σ is the conductivity tensor. Applying the same arguments of symme-
try as in the classical case,

σ =

[

σxx σxy

−σxy σxx

]

. (5)

If x is the longitudinal direction, then σxx, which relates the longitudinal
electric field to the longitudinal current density, can be called the longitudinal
conductivity. In the QHE regime, then, σxx =0, and

ρ = σ−1 =

[

0 σxy

−σxy 0

]

−1

=

(

1

σxy
2

)[

0 −σxy

σxy 0

]

(6)

=

[

0 −1/σxy

1/σxy 0

]

=

[

ρL −ρH

ρH ρL

]

.

Here, σxy (or Gxy) is the inverse of ρH (or RH), so there is logical jus-
tification in calling it the Hall conductivity3 σH (or GH). So, when σL = 0,
ρL = 0, σH = ne2/h, and ρH = h/ne2, where n is an integer. (Notice that
σL =0 and ρL =0.)

Looking at the QHE equivalent of equation (3), and remembering that
jy =0,

~E =

[

EL

EH

]

= ρ~ =

[

0 −
h

ne2

h
ne2 0

] [

jx

0

]

=

[

0
(

h
ne2

)

jx

]

, (7)

and we see that the longitudinal electric field is zero even while there is a
longitudinal current. This is the dissipationless current that was mentioned
in the introduction4. (Since the current is generated by a voltage VL applied
across the 2DEG, there must be a change in potential somewhere, and that
change occurs at the edges of the sample.) That’s enough of the monolayer
QHE; now onto the bilayer configuration.

3Due to the manner in which Hall resistance and conductance were defined in the
classical Hall effect, the relationship of Hall resistivity to σxy is not as simple as for the
QHE, so there is no conductivity that could meaningfully be called Hall conductivity.

4Even though there is no resistance, and it looks like a supercurrent, this process is not
technically superconducting because of the presence of the magnetic field, among other
reasons.
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2.3 Bilayer Configuration

The mathematics of the bilayer situation is a little more complicated.
Since there are two layers (called “Top” and “Bottom”), not only are there
interactions of electric field and current density within each layer (Top-Top
and Bottom-Bottom interactions), there are also interactions of the electric
field in one layer with the current density in the other layer (Top-Bottom
and Bottom-Top interactions). So there are four times as many elements in
the bilayer conductivity matrix as in the monolayer matrix:

σ =



















σTT
xx σTT

xy σTB
xx σTB

xy

σTT
yx σTT

yy σTB
yx σTB

yy

σBT
xx σBT

xy σBB
xx σBB

xy

σBT
yx σBT

yy σBB
yx σBB

yy



















. (8)

We have already described, named, and used symmetry arguments for
the same-layer conductivities. Now, by analogy with the same-layer conduc-
tivities, σTB

xx is named σL2 and σTB
xy is named σH2. Using the same symmetry

arguments as before, σTB
yy = σTB

xx and σTB
yx =−σTB

xx . And by applying an ar-
gument for inversion invariance (looking at the symmetries if the sample is
flipped over), we conclude that

σ =



















σL σH σL2 σH2

−σH σL −σH2 σL2

σL2 −σH2 σL σH

σH2 σL2 −σH σL



















. (9)

Later, when describing the research results from the computer program, we
will investigate the behavior of σL and σL2 in the form of σ00 =σL−σL2 and
σzz =σL+σL2. Before describing their behavior theoretically, though, a few
more concepts should be covered.

An additional complexity of the bilayer configuration is that, if the con-
ditions are right, a substantial number of electrons in each layer can tunnel
into the other layer and inhabit both layers. The situation is like an infinite
quantum well with a finite barrier in the center. The energy of each electron
is lower than the potential barrier, so solving Schrödinger’s equation yields
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two types of wavefunctions: symmetric and antisymmetric. The symmetric
state is of lower energy than the antisymmetric state.

A couple of parameters relate to the existence of these two states, and
they are the filling factor (or filling fraction) ν and the order parameter M0.
The filling factor is the areal density of the electrons divided by the areal
density of magnetic flux quanta. If νs is the filling factor for electrons in the
symmetric state and νa is the same for the antisymmetric electrons, then ν
can be expressed as ν =νs+νa. The equation for the order parameter is then
M0 =(νs−νa)/(ν). Another expression for ν is the sum of the filling factors
of the bottom and top layers, or νB+νT .

For a monolayer system, in which case ν does not relate to symmet-
ric/antisymmetric or top/bottom states, ν = 1 correlates with the presence
of the QHE but ν =1/2 does not. An interesting thing happens in the bilayer
system, though, when we look at the νB = νT = 1/2 case: With the layers
far enough apart, the system acts the same as a two monolayers and neither
of the layers show the QHE, but when the layers are very close, the same
conditions bring on the QHE. So, when these two decoupled systems with
dissipating current are brought close enough together, they couple and both
show no dissipation! It is the whole bilayer system that shows the neces-
sary condition of ν = 1 (νB +νT = 1), but there is a transition that occurs
somewhere between “far enough” and “very close.” This transition is what
we studied with the computer program.

Experimentally, the “close-ness” of the layers is measured by the fraction
d/l, where d is the distance between the layers and l is the magnetic length5,
or, essentially, the distance between each electron. As far as the electrons
are concerned, decreasing d/l is like bringing the layers closer together. This
is achieved by decreasing the strength of the magnetic field, which increases
l.

Now, according to theory, which is not described here, the transition from
decoupled layers with no QHE to coupled layers showing no dissipation re-
ally only depends on the value of the order parameter. So the conductivities
should be a function of the order parameter, and the transition can be ob-
served by watching this relation. That is the approach taken with the use
of the program. Theoretically, it is easy to determine how the conductivi-
ties should behave at the ends of the transition. At M0 = 0, with no QHE,

5The magnetic length l =
√

h̄c/eB, and 2πl2 is the area containing one magnetic flux
quantum.
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(or equivalently, with the layers far apart) there is essentially no interaction
between the layers and σL2, which measures trans-layer interaction, goes to
zero. At M0 =1, with the QHE, (or the layers very close – so close as to be
nearly overlapping) the layers cannot be seen as separate and σL equals σL2,
and σL = 0. Given that σ00 = σL−σL2 and σzz = σL +σL2, this means that
at M0 = 0, σ00 = σzz, and at M0 = 1, σ00 = σzz =0. Between the extremes of
M0 = 0 and M0 = 1, though, it is not so easy to determine how σL and σL2

(or σ00 and σzz) behave. That is where the program comes in.
Several more variables should be addressed before moving on to a discus-

sion of the program. If the electric field is caused to oscillate, then it has
a temporal frequency ω and a spatial frequency q. The temporal frequency
is determined by the period of time it takes for the field to make one full
cycle at a point in space (ω =2π/T , where T is the period), and the spatial
frequency is determined by the distance it takes for the field to make one
cycle at an instant in time (q = 2π/λ, where λ is the wavelength). These
frequencies can be related to the susceptibility χ, and the relation will be
covered in the description of the program. Also, the semiconductor sample
used to create the 2DEG has a characteristic disorder. It can be quantified as
a disorder within each (s=“same”) layer vs and a disorder that is correlated
between the two (d =“different”) layers vd. Experimentally, these separate
disorders can be controlled to a certain degree by growing the semiconductor
essentially one atomic layer at a time by molecular beam epitaxy (MEB), and
by controlling the placement of the doping atoms (impurities) in the semi-
conductors. If the impurities are placed in between the two layers, then the
disorder will be correlated (vs =vd), and if the impurities are placed outside
the layers, the disorder will be less correlated (vd≈0).

3 The Program

3.1 Description

The code that was written to model the bilayer quantum Hall system
essentially takes various values for parameters from the user and, using in-
cremented values for the spatial frequency of the electric field q, calculates
the associated values for the susceptibility χ, filling factor ν, and order pa-
rameter M0. (Actually, the program returns three different values for the
imaginary component of χ, but there will be more on that later.) How the
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program does these calculations will not be discussed because that is beyond
the scope of this paper. We will just consider it a black box. The parameters
that the user sets are the incrementation of q, the frequency of the electric
field ω, the disorders of the layers vs and vd, and the distance between the
two layers, expressed as d/l. (Since l involves the strength of the magnetic
field, it brings that variable into account.) While the QHE is usually studied
experimentally by watching the transition from no QHE (M0 =0) to its full
effect (M0 = 1), the program moves in the opposite direction and changes
parameters to decouple the layers.

Program Input Program Output
q, ω, d/l, vs, and vd Im χ00, Im χ002, Im χzz, ν, and M0

3.2 Data Analysis

Earlier, it was noted that the behavior of σ00 =σL−σL2 and σzz =σL+σL2

would be analyzed in the results from the computer program, but as of yet,
we have not seen any conductivities associated with the program. A little
more theory will take care of that.

Using definitions and the continuity equation that relates electron density
and current density (conservation of charges in each layer), it is possible to
relate susceptibility χ to conductance σ by the equation

Im χ = lim
ω→0, q→0

(

σ

ω

)

q2, (10)

and if q2 is kept much smaller than ω, which is small itself, then

Im χ ≈

(

σ

ω

)

q2. (11)

Since the program returns values of χ versus q, and ω is known, values
of σ can be calculated using quadratic regression. And with two types of
conductivity (σ00 and σzz) come two types of susceptibility (χ00 and χzz). In
addition, though, the program calculates χ00 two different ways (as a check),
so there are a total of three returned values for susceptibility.

3.3 Results

In obtaining the values for conductivity, we found that the program gave
values for susceptibility (Im χ) that fulfilled a parabolic curve relative to the
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values for spatial frequency q, just as it should have, according to equation
(11). This indicates that the program works well, in that aspect at least, and
that the values chosen for q and ω fulfilled the condition that q2

� ω.
Several graphs were produced that show the relationship of the filling

factor ν, the order parameter M0, and the conductivities σ00 and σzz. Four
of them are included here, starting on page 14, and explanations are written
in the captions below the graphs.

4 Conclusion

From the original work and data, we conclude that the bilayer conduc-
tivities σ00 and σzz are fully dependent on the order parameter M0, where
σ00 = σL−σL2 and σzz = σL +σL2. The disorders and distance between the
layers will affect where on the σ-versus-M0 curve the conductivities lie, but
M0 determines the curve. This conclusion fits with the theory and verifies
the usefulness of the program that was used to model the bilayer quantum
Hall system. The program’s approximate results for the conductivities σ00

and σzz versus the spatial frequency of the electric field q fit nicely with the
exact equation (equation 10). The equality of σ00 and σ002 turned up, as
expected, in each of the relevant graphs. Also, the behavior of σ00 and σzz

at the limits of the transition from the presence of the QHE (M0 = 1) to
its absence (M0 = 0) was produced accurately. These three additional facts
provide further support for the approximations used in the program. In sum,
we conclude that we can model the experimental bilayer transition of large
d/l to small d/l by changing the order parameter (which varies with disorder
and filling factor), as was done with the program.
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Figure 2: Hall resistance RH (essentially the reciprocal of the Hall con-
ductance) and dissipative longitudinal resistance R versus magnetic field
strength. This graph includes fractional quantum Hall effects, and the num-
bers indicate the Landau level filling factors at which various features occur,
so this graph is a bit more complicated than necessary at this point. Notice,
though, how the relationship of Hall resistance to magnetic field is no longer
linear, as was the case in the classical Hall effect. Between transitions, the
Hall resistance reaches plateaus ( h

ne2 , where n is an integer) while longitudinal
resistance goes to zero. [4]
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Figure 3: Order parameter M0 versus the filling factor ν with correlated
(vs = vd) disorder. Given that ν starts at one, with all the electrons in
the symmetric state (νs=1), and increases with electrons entering the anti-
symmetric state, the curves behave just like we would expect, keeping the
definitions of ν and M0 in mind. As the disorders increase, more electrons
move to the antisymmetric state from the symmetric state.
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Figure 4: σ00 and σzz versus the filling factor ν, with correlated disorder.
This is a typical graph, with one particular value of disorder.
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Figure 5: σ00 and σzz versus the order parameter M0, with correlated disorder.
Each segment of the graph is produced with a different value for disorder
(while keeping vs=vd). The near-overlapping of the segments shows that the
values for sigma are essentially dependent upon the value of M0 only, as was
predicted in theory. The values of disorder used, from left to right, are vs=vd

= 0.204, 0.198, 0.190, 0.185, 0.180, and 0.165.
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Figure 6: σ00 and σzz versus the order parameter M0, with correlated disorder.
Two different values for disorder (with vs=vd for each) and the distance d/l
were used to obtain the two sets of graphs. This graph indicates strongly
that the values for conductance are fully dependent on M0. The disorders and
distance between the layers will affect where on the curve the conductivities
lie, but M0 determines the curve. For d/l=1.0, the disorder is vs=vd = 0.165,
and for d/l=0.5, the disorder is vs=vd = 0.204.
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