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1 Introduction

Instead of imagining space-time as being warped by mass and energy, one can speak of a classical spin-2
graviton field (in flat, Minkowski space-time) that generates gravitation. Although we don’t know yet
how to quantize this field, we can think of it in a way similar to how we think of electromagnetism
being mediated by photons. And just as a 1/7? Coulomb force generates magnetism when the finite
speed of the mediating photon is taken into account!', a 1/r2 Newtonian gravitational force generates
“gravito-magnetism” when the finite speed of the mediating graviton is taken into account. Magnetism is
fundamentally an electric-force effect?, and gravity must have some analogous “magnetic” force, meaning
a gravitational force proportional and perpendicular to the velocity of a test mass. Einstein showed
that gravity should be non-linear, so we know that the graviton should self-interact. (General relativity
also implies that the graviton should be spin 2.) Taking that self-interaction (and spin-2) into account
should bring us all the way to the equivalent of general relativity. But it may be that in most of the

!See Chris Clark’s paper “Magnetism is not fundamental” at <http://dfcd.net/articles/magnetism.pdf>.
2Even the quantum spin magnetic moment is seen to be a natural electric effect in quantum field theory; see “What is
Spin?” by Hans C. Ohanian, available on my website at <http://aforrester.bol.ucla.edu/educate.php#Outsource>.



universe (barring black holes, supernovae, et cetera), all you really need to know about gravitation is the
electromagnetic-analogue part (gravito-electromagnetism or GEM) to have an accurate description.

In this paper, instead of taking the “bottom-up” approach just discussed (in which one constructs
GEM by starting from the Newtonian gravity and taking the finite speed of the graviton into account), we
take the “top-down” approach and start with the equations of general relativity, apply some simplifying
assumptions, and obtain the GEM equations. After doing some preparation in sections 2 — 5, we show
that under two assumptions,

(1) low mass-energy density or weak gravitational fields (so we may linearize the Einstein equations)
(2) slow changes® in matter-energy (so we may neglect second order time derivatives)

Finstein’s field equations of general relativity,

8rGN
Gp,u = CTT,U,V;
become
~ 1 (e)f 1
VG > L lv.p (1)
LVXxH- 138G =~ —p, IO 4 1,V M+ 0P, (2)
very much like the electromagnetic field equations in matter,
1of 1
VxB—L0E = pod'+ 1oV xM + pd,P. (4)

We also discuss the meaning of the differences between these equations. In the preparation work, we
linearize all the tensors and the Christoffel connection symbols, which takes care of assumption 1 above,
by taking the metric to be the Minkowski metric plus a perturbation. In section 6 we apply the second
assumption.

Furthermore, in section 7 we show that the geodesic equation for particle trajectories in space-time,

becomes the “gravito-Lorentz” force,
d
T?ZFgL:E[G+(%XH):|7
analogous to the electromagnetic Lorentz force:
And finally, in section 8, we do an example problem dealing with the Lense-Thirring effect, which relates

to “inertial frame dragging” in general relativity.

2 Notation

We use 4

0 = 90" = -+ +07+8" = %7+, +09,°+0.> = -+ V

3To be more accurate, we should use a word like “acceleration” rather than change, since “slow change” implies small first
derivative with respect to time.

1Sometimes 92 is written as [, in analogy to A, and sometimes it’s written as (%, in analogy to V2, usually in physics
settings. I prefer the (0? notation because it reveals its squared nature (while the box itself reveals its four-variable nature).



1
K. = and K, = Ho
4

- 4 €0
We use h to denote some form of contraction of the tensor h, for example, taking the “pseudo-trace”
of hy: h = h*, = g"’h,,; or the following contraction: hg’c = h%37 = gm;haﬁ“"se. We will thus put

bars over the Riemann tensor symbol (R) to denote the Ricci tensor (R) and Ricci scalar (R) and over the

Einstein tensor symbol (G) to denote the Einstein scalar (G), showing that they are contractions. We will
use G\ for Newton’s gravitational constant (except when accompanied by a mass M):

G=G", #G+#Gx

GM = GNM

Also, we will use G and G* to denote the gravito-electric field. With these notations, the only ambiguity
is between the Einstein tensor G (when writing it without super- or subscripts) and the magnitude of the
gravito-electric field |G| = G (which I think does not turn up in this document), so long as they are not
multiplied by a mass M.

3 The Metric, Perturbation, and Potentials

We may describe the metric g as the Minkowski metric n = diag(—1,1,1,1) plus a perturbation h, where
|hw‘ & 1 for some appropriately chosen coordinate system:
Juv = N + hw/

The inverse is
Vo v v
g~ g —

since

g/wgyp = ("7#1/ + hyu)(n”” — h")
= 0Op + hyuot?” — Dkt + hy BP
- o+ ue]

We will decompose h into components that later be seen as analogous to the electric scalar potential and
magnetic vector potential under the appropriate circumstances. This “potentials decomposition” of h is
the following:

—2® w1 w9 w3

h _ w1 2(811 — \If) 2812 2313

py w9 2821 2(522 — \I/) 2523
w3 2831 2832 2(833 — \I/)

5%

o —2® U)j . —2® wj
o wi 2(5ij — \I/(SZ]) o wi hij
v nyv

where h and s are symmetric since g and 7 are symmetric, and

v

171
—ip
(hij = 51505
= ghij + 00

N[ =

Sz'j



so that s is traceless: § = s11 + S22 + $33 = 6ijsij = %((thij — %(thkkéij) = %(hjj — hkk) = 0. Note that
h'i = 6% hj; = —6¥ # h = h*, ~ n"’h,,, and that h cannot be called the trace of h, although it might be
called the pseudo-trace of h. We have

h = h",

guyhuu

~ n"hy, (equality to first order in h)
= —heo + h11 + hoa + hs3

= 20+ 2(811 — \I/) + 2(822 - \If) + 2(333 — \I/)

= 2(®+%-3V)
= 2(®-37)
Also, for reference, we have hog = —2®, ho; = w;, and h;j = 2(s;; — ¥;5).

3.1 Dimensional Analysis

Note that g = g, dat*de”. While the metric tensor gy, is a dimensionless type-(0,2) tensor field, the metric
g is an area-valued 2-form field. °

3.2 Notable Metrics
The general, linearized metric is
g = —(1+2®)c?dt* + 2w; dt dz’ + [(1—-2W)6;; + QSij]dl‘ide
Given that ¥ = ® and s = 0,
g = —(1+42®)c%dt* + (1 — 2®)(dz? + dy? + d2?)
The Schwarzschild metric is

-1
g=— (1 _ 2GM> 2d + (1 _ QGTM> ar? & 1202

T

®Are both g and g, called “the metric tensor”? If so, what would be a good way to verbally distinguish them?



4 The Connection and Tensors of Interest

In terms of the perturbation h, and to first order in h, we have that the Christoffel connection I', Riemann
tensor R, Ricci tensor R, Ricci scalar R, and Einstein tensor G are

Fﬁu = gp)\(augu/\ + 81/.9/\;1, - 8>\guu)
= 77”)‘ (8;Lhuk + a}/h}\p - 6>\huu)
R\ 0,10, — 0,10, + Ty —Tozke”
~ 9,10, — 0,17,
B (lnf“(ﬁ,h/ﬁa hay — Osh )) ) (lnpA(Q,M+6 hag — Oxh ))
o\ 3 m TADNY v v\3 m n'lho o
= 1P (050uhry — 000shuy — Byduhire + Oy 0rhoy)
= 1 (05041, — 050 hyy — By 0, + 0,07 h)

N= N=

1

RMV = Rp,u,pl/
= % (apallhpu - apaphyy - 8uaﬂhpp + 8V8php#)
= % (8/)6Hh’pu - 82}7’1);; - 8V8HB + (9,,39th)
= 1 (8paﬂhpy +0,0,h", — 0,,0,h — 82h,“,) (rearranging and using symmetry of h,,)
R = R,
~ % (3p8”hpy + 0,0, h?” — d,0"h — 8%,})
= % (8Pauhpu + apauhpl, - 82}_1 — 82}_1)
= 0,0"h", — 9%h
= 0,0,h" — 9%h (rearranging and renaming indices)
G}Ll/ - RILV - %g#l,R

~ Rw — %an
= 300417, + 0,007, = 0,00 — 9Dy, ) = S (9,007 — 0°R)
= 3 ((‘%fmh”u +0,0,h", — 0,0y h — 8 hyyy — 1, 0,050 + n,Wa%)

We could also derive this linearized Einstein tensor by varying the following Lagrangian with respect to
the perturbation h,,:

L=3 [(f%h‘”)(@uﬁ) — (3hP7) (DphH) + 30 (0P ) (Byhpo) — A0 (8,h) (B, h)



In terms of the “potentials decomposition” of h, we have

pv

re ~ %np)‘(auhl,)\-l-ayh)\u_a)\th)
Do = 31%(Oufon -+ Boks — Do)

= 0y

Ty =~ 2n"(0ohoi + ohio — O;hoo)
= 0;® + doho;
= 0;® + dow;

L% =~ 31" (9hoo + Oohtj — Oahrjo)
= 0,0

Il =~ 10" (d;ho;i + dohij — dihyjo)
= 3(0jw; + ohij — Oywy)
= Oywiy+ 80 ij

F?k ~ §n00(8jhk0 + Orhoj — Oohji)
= —%(ajwk + Opw; — Oohjk)
= =0 wr) + 300h;k

F;k ~ %nii(ajhki + Okhij — Oihji)
= Ohwyi — 30

Repov = 9rpR’ 400
= 777p JF% )(0o sz/;t - 5—“)
= (0,1, — 0,T%,)

Rojor =~ m00(0T9, — AY,)

= — (80 (_8(jwl) + %aohjl) - 61(8]@))
= 9;00® + 0O wyy — 500 hyy
Rojrr =~ 1oo(OkTY — 0T %)

- - (ak (—a(jwl) + %aohjl) s (—a(jwk) + ;aohjk)>
= OWdlyun = §0uduly = Ay + 3000l
$0k(05w1 + Qpry) — $01(0jwi + Q) + 5(Diohjr — OkBohjy)
= (k0w — 010jwy) + Bo5(Oyhyj — Orhuj)
@-%(akwl — Qqwy,) + 0o Ophy;
030wy + oDy
Riji ~ 1i(0kTh — OTY)
= Ow(Ohyi — 30ihj1) — OO hiyi — 50ihk)
= Ox0(hyyi — 3010ihj — D10 hyyi + $010;hjy,
= 6k2 (9hii + Ouhi) — 812 (Ojhki + Owhrys) + %(@&-hjk — Ok0ihjr)
= 0L (Ohys — D) + DL (Orhy; — akhlj)
0;0hyyi + 0;0phyy;



12

R o
RpOpO
0 1 2 3
R00 + R 10 + R020 + B30
—Roooo + Rig10 + Ra020 + R3030 (lowering indices with 7, thereby keeping only terms first order in h)

Reooo + Ro101 + Ro202 + Roso3 (by antisymmetry in last pair and first pair)

(2101® + 0001wy — S0000h11 ) + (02020 + 0Dty — 20000hz2 ) + (Ds0s® + Do) — $90Dohss)
V20 + 901wy + OgOaws + OoOsws — 290> (Rt + haz + h3)

V20 + 9yV-w — 9p” ((s11 — U) + (520 — ) + (s33 — T))

V20 + 9oV -w — 9o° (§ — 30)

V20 + 9y V- w + 30,° ¥

RPOPJ'

ROOOj + R101j + R202j + R303j

ﬁaoo/ij Ri01; + Rop2j + R303;

—Ro11; — Ro22j — Ro3s;

- (513[1%'1 + f%auhm) - (525[2%'1 + aoauhm) - (533[3%'1 + 303[jh313)
- (513[1%] + 020wy + 533[3%1) — % (%hm +0iha2 + 95 hs1s)
—3 (0101w; + 0205w 4 D305w;) + 5 (010;w1 + 020jwy + D30;ws)

—300 (9jh11 + Ojhas + Ojhs3) + 500 (01hj1 + Ozhjo + Oshys)
—iV2w; + 30,V -w — $00(0;h"), — Och;¥)
~3V2w; + 30,9 -w — 100 (~60,W — 204(s," — 5} W)

—39%uw; + 30,V w+ 0 (30,0 + Ops* — 0,0
—3Vw; + 10,V -w + 90 s;* + 2000, ¥

R

RV + RYyy + R + Ry,

—Roio; + Rii1j + Raizj + Rsis;

- (@@‘I) + 9p0wjy — %802h¢j)

+ (BDuhyp + 00k ) + (BDiahsps + 0a03hags ) + (9Dyahsgs + Os0ysha )
(005 — 0005w, + 300%hig ) + 0i (ks + Olohsps + Oshygs ) + (910 kg + 020 hags + Db )
(_aiajq) — 0oOjwjy + %502hij) + 0;2(01hj1 + Ozhjs + O3hjs) — 0;5(9;h11 + Ojhag + Ojhss)

+2(10jh1; + 020;ha; + 030;h3;) — 2(O101hyi + 0202 j; + 0303h;)

(0050 — 000w + S00%hiy ) + 0,0h," — 10,00 hya + 30,04, — L9%h;
—0;0;® — 0odwj) — 0%hyj + OOy — 19,06 by

—0,0;® — Dodwyy — 1072(s5; — W6;) + k2 (ausj)k - a(iaf)xp) — 10,0,(—60)
—0;0;® — 000 wj) — 945 + O°WE; + 2010;57)" — (Ok0;07 Y + 0,0,;6F W) + 30,0,V
—0;0;® — 000 wjy — 0%sij + O° W65 + 20,0(;55)" — 20;0;¥ + 30;0; ¥

—80;0;(® — ) — Dodwy) — 0%si; + 20,055 + 02V



R = R,

R°% + R,

~ —Ry+ R (to first order in h)

= = (VR0 + Vw3000 + (~0'0,(0 — W) — 900wy — 02 + 2040015, + 0Pws )
= V20— 9V-w —30°¥ — V3D — ) — 9V -w + 20,9's,* + 30°T

= V20— U) — 20,V -w — 395> ¥ + 20,,0;5" — 3(0y* — V)W

= —2V3(® —20) — 200V - w + 20;,0;5F — 60,

= 2 (—v2(c1> —20) — 9oV - w + 8;0;5 — 3302@)

and
Gp,u = R,ul/ - %guuR
~ R, - %WUR
Goo =~ Roo— 3nooR

~ (%JFQMJDB«?&(F) +12 (—VQ(;K— 20) — YW + 005" —3@0}\11)
= 2V2V + 9,0;s"

Goj =~ Roj — uarR
~ —iVPw; + 10,V w + 8yOs;” + 2000; ¥

Gij ~ Riy—imR

(—0:05(@ — W) = 000wy — 051+ 20uDyis) " + 0206, )

12

50,52 (- V(@ = 20) — 9V - w + 9,05" — 30,70
= —0;0;(® — V) — g0 wj) — 0?sij + 20105, + 0i5(—00” + V)W
5i;VH® — 2V) 4 6,;00V - W — §;;0,0,s"" + 38,;00°
= —0,0;(® — V) — Ddwj) — 0%sij + 20,055 — 0:;00°V
5i; VH® — W) + §;,00V - W — 8;;01.0,5" + 36;;,00° W
= (6;V%—0:0;)(® — V) +6;j00V - W — 80 wj) — 0;;0,01™ — 0215 + 2040 i55)F + 26:;00°

4.1 Dimensional Analysis

Note that the Christoffel connection® (symbol) F;k has dimensions of inverse length and that the Riemann

tensor R”,,,, Ricci tensor R, Ricci scalar R, and Einstein tensor G, all have dimensions of inverse area.

5 The Linearized Einstein Field Equation

The Einstein field equation(s) is (are)

TGN
G = TTW
or
G = K1

GIS there Such a thlng as the abstract Christoffel Connection I that iS dlstlnct from the Christoffel Connection (symbol)
Jjk



where k = 87GN/c*. Since the stress tensor is defined as 7", the right-hand side contains a factor
quadratic in the metric: 1}, = guag,,BT‘m .
Now, writing this (nonlinear) field equation out in terms of the metric, we get
Gul/ = Ruu - %guué
_ 1 _
= Ru - iguvRuu
_ 1
= R —39wR,
— P A P TA 1 P A P TA
- {apf‘ﬁ“ a aVqu + Fp)\FVH o FV/\FP#} — 29w {aﬂrﬁﬂ a aufﬁu + Fp/\rw - Fu/\rpu}
= % {ap [ng (8’/9}” + 8/197'1/ - a’rgl/#)] - 8’/ [ng (apg,uT + 6#9TP - aﬂ'gp#)]
+%gm—(apg)\7' + 6/\ng - Tgp/\)gAT (al/g;m- + 3;1971} - 87.91/#)

— 19 (Dvgrr + Ongrv — 02 9u\) " (OpGur + Opgrp — afgpu)}
_%gﬂv {ap [ng (Ougur + Ougry — 87'9##)] — 0y [ng(apguT + Ougrp — argpu)}
+297 (0pgrr + Orgrp — 0-9p2) 9" (OpGpur + Opgry — OrGun)
—19°(Dugrr + O\Grp — 07 9u0) 0" (OpGpur + Opgrp — 8Tgpu)}

= ﬁguagyBTaﬁ

If we take our weak-field approximation g,, = 7., + hy, where |hw’ < 1 for some appropriately chosen
coordinate system, and linearize the Einstein equation, we get

Gu =~ 3 {inap(auhm + Ouhry — Orhyy) — 070y (Ophyr + Ophrp — aThP#)}
= 3 (f%é‘uh”u + 0,00h”, — 0,0,k — *hyuy — 1, 0pONR> + nwa?ﬁ)
K (Muatlvs + Trrtted + Tk + Terkag) T

= /{,’I’]ua UVBTQB

1

where the second line is obtained from the work done in the previous section. Again using our previous
work, we can write the linearized Einstein equations in terms of the potentials:

Goop =~ 2V2\Il+8,~8js“

~ gTY (5)
Goj =~ —3V?w; + 30,V -w + 9p0ys,” + 2000; ¥

~ —gTY (6)
Gij = (0;;V? —9,0;)(® — ) + 6;;00V - W — 0odwj) — 0;060,5™ — 0755 + 20,0:55)" + 20,00V

~ KT (7)

These equations are reéxpressed in particular gauges at the end of the next section, after the parallels with
electromagnetism are drawn.

5.1 Dimensional Analysis

Consider
8mGN

cd

Gy = 90 9vsT? = Kguagus T



Note that since G, has dimensions of inverse area, Gy has dimensions of force-area per squared mass,
% has dimensions of (force)(time)?*/(area)(mass)?, and g, is dimensionless, T*" must have dimensions of
energy per volume (energy density), which is the same as force per area (pressure):

]l 7] = <(f°“e)“ime>§> W () < (o) (2 = = (6wl

(area)(mass) area (force) area

6 Gravito-Electromagnetism

If we impose two certain conditions on the matter and energy in spacetime, we will see that the Einstein
and Maxwell equations are almost exactly the same. Given that we have

(1) low mass-energy density or weak gravitational fields (so we may linearize the Einstein equations)
(2) slow changes’ in matter-energy (so we may neglect second order time derivatives)

we will find the similarity after some mathematical manipulation.
The linear Einstein equations are

Gog =~ 2v2\11+8i6j8ij

~ gT™

GOj ~ —%V%Uj + %OJV -W + aoaksjk + 2808j\11
~ —gT%

GZ']' ~ (%VQ — OZOJ)@ — \If) + 5ij80V W — 608(Z-wj) — 5ij6k8lskl — 82Sij + 2(9k8(i8j)k —|—M
~ KTY

If we define S¥ = 9;s'*, so that 9;0;s = 9,8 = V-8, and aksjk = §;, and 8k8(isj)k = 0(;Sj), then we
may rewrite the above equations as

Gy ~ 2V20+V.-8

~ T

Goj ~ —3V2w;+ 10,V -w+ 0S; + 2000,V
~ —gTY

Gij ~ (%VQ - 618])(‘1’ — ‘I/) + 5ij80V W — aoa(iwj) — 5ijV S - 828ij -+ 28@5]) +M
~ gTY

Taking the trace of the third equation and defining (p) = %Tii, we see we have

G,

(2

1

(3V2 = V)(® — ¥) + 300V -w — 9V -w — 3V-S — %5 + 20U,
= (3V2-V?(®-V)4+200V-w—-3V-8§+2V-S

2V3(® — W) 4+ 20V -w — V-8

~ KT

K3(p)

"To be more accurate, we should use a word like “acceleration” rather than change, since “slow change” implies small first
derivative with respect to time.

10



so that V2U = V2® + 9yV-w — 3V -8 — k3 (p), and therefore VU = V& + gyw — 38 — é’P - éVx C,
where &, is a constant to be defined later, C is an arbitrary vector field, and

1 R
i_'P(r) = o /R3 ﬂ%(p>(r')ﬁ dv’ so that iV-’P = H%(p>

with R = |R| = ’r — r". Then, rewriting the equations for Goo and Gy,

2(V2o+ V- w—ivE - LV P)+ 95 = p1™
“1V20; 4+ 10,V - w + 00S; + 200 (ajcb + Oow; — 18; — 2P — L(Vx C)j) S
—5 V2w + 30,V - W + 0o8j + 2000;® + 280%a5 — 98] ~ —KT +22-0¢(Vx C); +22-00P;
or, rearranging and dividing by 2,
V20 - 19, V.w e A A

L0,0;® + 10,V -w — jViw; = —TENTY 4 119,V < C); + LL0,P;

gg C

1

Now let’s take a look at the electromagnetic potential equations and see how similar they look to the
two gravitational potential equations immediately above.

-VV-8V-A = Lp-LV.P

El
ZOVV +V(V-A) = PA = pod+poVxM+ g0 P
L0,V +9;V-A—02A; = poJ;+ po(VxM); + 1100, P;

To make the gravitational equations more like the electromagnetic ones, we can add i(’)onj on the left of
the second equation (which will combine with the —Vij term to yield a —82w]~ term) since it is negligible
by assumption, and let’s define

Mz&gC

which is just as arbitrary as the arbitrary vector field C.

And now, let’s finish the transformation by figuring out how the constants should relate. Using Newton’s
law of gravitation and Coulomb’s law, we compare F = K.qiq2/r? and F = Gnmima/r? and see Gx =
Kge = 1/4me,. Since eopop = ¢ ? = Ky /K., we have Gy = CQKgm = czug/élﬂ'. So the gravitation equations
become (after dividing the second one by ¢)

-V - 1gV-w =~ — LT -1v.P

1
cleg

2 .
C%éwjfb + i@Vw — ﬁaij ~ —%TOJ + 11 (VXM)j + L1 8{Pj

) )

A final rearranging yeilds a Maxwellian form of the (slowly changing) linear Einstein potential field equa-
tions

V2o -9V (%) ~ -1 (L) ~-ilv.p (8)
5010, + 3 [0,V (%) =02 ()] = g (¢TF) + (VX M) + 150 9)
which you can see are very similar to the Maxwell potential field equations
-VV-0V-A = Lf-1v.P (10)
L0,V +0;V-A—0%A; = poJt+ po(V x M); + pod, Py (11)

11



Of course, if we define the gravito-electric field G and the gravito-magnetic field H
GE—V@—%@tW and H=Vxw
as analogues to the electric field E and the magnetic field B
E=-VV -0A and B=VxA
f

and we define the “free” (non-gravitational) energy® density p©f and “free” energy current density J(©
by

TOO ) TOj
PO = y and (JOH = cr
then we gain the gravito-electromagnetic field equations
~ 1 (e)f _ 1
VG > L) lv.p (12)
LVXH - 10,G =~ —p IO+ 5,V M + 11,0, P (13)
very much like the electromagnetic field equations
1 f_ 1
VxB—-L0E = poJ' + poVxM+ o0, P (15)

The factor of 1/4c arises since
LVXH-L0G = LVxVxw- L0 (-Vae - Low)

= LV(V.w) - LVw+ 50, V0 + Sodw
L V(v - v+ Lo ve

12

12

LHvvee) - 2]+ Love

12

—,ugJ(e) + p1g VX M+ 1150, P

So, the equations are very similar, but what do the differences mean? One difference is the changes
in signs, which is easily explained: in electromagnetism like charges repel but in gravitation like charges
(positive masses) attract. Another difference is presence of the factors of c. I'm not yet sure how to explain
this. ® There is also the factor of 4: what Wikipedia says in the article on Gravitoelectromagnetism'®
seems to suggest that this has to do with the spin of the graviton. Finally, there is the task of discovering
in what sense p(®f and J©F are “free”, interpreting what P and M mean, and determining why M is
arbitrary (or at least seems to be arbitrary). Apparently, P has to do with “bound” energy, but I'm not
sure how to check that yet. And M appears to do with “bound” circulating mass, or angular momentum,
perhaps including quantum mechanical inertial spin, if it exists.

6.1 Differences Between EM and GEM Equations

(1) signs (gravitation is only attractive, mass is only positive)
(2) factors of ¢ (trivial?)
(3) factor of 4 (spin-2 graviton?)

8Since 7% and T% have dimensions of energy density, this terminology of “energy density” is not quite right.

9We may have to do some constant shuffling to get a more ideal and analogous combination. It may be that the SI definition
of B or A is not ideal since we have E = —VV — 0; A rather than E = —-VV — %@A.

YWikipedia “Gravitoelectromagnetism” article URI: http://en.wikipedia.org/wiki/Gravitoelectromagnetism
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6.2 Issues to Resolve

(1) the meaning of p(®f and J(©)f (“free”?)
(2) the meaning of P (“bound” energy?)
(

3) the meaning of the seemingly arbitrary M (“bound” angular momentum, spin?)

6.3 Gauge Freedom in Potentials

Let’s compare the gravitational and electromagnetic gauge transformations (using the gravitational gauge'!
&H(t,x) and the electromagnetic gauge A\(¢,x)) and then look at some particular gauge choices.

d — &+ Gy V = V =08\
w; — Wi+ 605’ — 6150 Al — A + '\
U - U 19

sij — sij + 0(i&j) — 5OkE 0

e Transverse Gauge: (generalization of the conformal Newtonian or Poisson gauge, closely related to
Coulomb gauge in electrodynamics)

dw' = 0 (analogue of Coulomb gauge, 9;A° = 0)

Oi s¥ =

Linearized Einstein Field Equations in Transverse Gauge:

Goo ~ 2V2\I/
~ KT

GOj ~ —%Vzwj + 280(9]'\11
~ —gT%

Gij ~ (5ijv2 - OZOJ)(CD — \IJ) - Ooﬁ(iwj) + 25ij602\1’ - 8257;]'
~ KTY

e Synchronous gauge: (equivalent to Gaussian normal coordinates, “as discussed in Appendix D”; grav-
itational analogue of the temporal gauge of electrodynamics A = 0, since it kills off the nonspatial
components of the perturbation)

=0

e Lorenz / harmonic gauge: (note h ~ n**h,,)
Ouht, —29,h =0
7 The Geodesic Equation and Gravito-Lorentz Force
A test particle in free-fall (where there are only gravitational forces) will follow a geodesic:

dph
% +hep’p” =0

Ng g1 a “d-gauge”?
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We also have that

nw . dax* dzt
p= gy = Mgr
0o _ dt
p = cgy =E/c
Pl = mgi ‘ﬁ’; ymv' = Ev'/c?

where A is an affine parameter (related to the proper time by an affine transformation), and A = 7/m and

E = ymc?

if the particle is massive.

12

So the geodesic equation can be rewritten, emulating Newton’s second law,

dt

— % [T00p"p” + 2050p 0 + Tp7p |
[(80(I>)(E/c) +2(0;®@)(Ev /¢*)(E/c) + (—a(jwk) + %aohjk) (Ev’ /) (Ev®/c?)

—cE [8()@ +2(0;®)v7 Je — (8(jwk) - %(%hjk) vjvk/CQ]

2

—EFZ o
2

_E [Fz pp’ + 2%’ p° + T pjp]

62

5 [(3@ + dgwi)(E/e)? + 2 (%wﬂ + %30%') (B /) (E/e)
+ (Ohugi — 30 (Evj/CQ)(Evk/CQ)}

—F |:82<I> + Jow; + 2 (8Uw2} + %80hij> vj/c + (8(]}%)@ — %81/}7/][{:) Ujvk/c2:|

This expression for dp’/dt simply shows the different kinds of forces that an observer will be able to detect
in his coordinate frame. Now, we may use gravito-electromagnetic field definitions to reéxpress these forces.

and since

=-Vo-1low G'= -0'® — gyu'

H=Vxw H = &9%9wy,

HY = &5 — 670 0, = 8% (Dywy, — dyw,)

(vx H) = &by, 2 gidky, gk
= giiky, Eklmﬁlwm = Eklm k”@;wmv] (5lm — 5lm)8lwmvj
(Biwj — ajwi)’l)j akgse (&wj — 8jwi)v
= (vx Vxw)
Oy’ = 3(Ojwi — ;) = —3(v x H)'

12What about light-like trajectories? What kind of parametrizations are possible?
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we can restate and reformulate the geodesic equations like so:

% = —F |:80CI) + 2(8j(1>)vj/c — (8(jwk) — %80hjk) ’Uj’Uk/CQ:| (16)

' _ g [_@@ — Oow; — 28[jwi}vj/c = Qohijv’ Je — (8(jhk)i B %aihjk) Ujvk/CQ]

Notice that for very slowly changing (in space and time) h;;, Equation (17) is nearly identical to the
electromagnetic Lorentz force law:

P =Fu = F[G+ (¥ xH)

P —F, =Q[E+ (v xB)]

The only difference this time is the factor of ¢ in the magnetic term of the gravito-Lorentz force.

7.1 Dimensional Analysis

Note that we obtain the gravito-electric force
F,. = EG

(where E = ymc? as defined earlier) from the gravito-Lorentz force and that this agrees dimensionally
with our definition of G
=-Vo - %Otw

which shows that G has dimensions of inverse length since ® and w are dimensionless.

131f 9;w = 0, the gravitational potential ® tells you how much gravitational energy there is per (non-gravitational) energy
in spacetime. Correct? (How does the feedback or nonlinear idea of gravitational-field-becomes-source come into play?)
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8 A Simple Geometry: The Lense-Thirring Effect

Exercise 7.2 in Carroll [1] (pg 320): Consider a thin spherical shell of matter, with mass M and radius R,
slowly rotating with an angular velocity §2.

(a) Show G = 0 (inside the shell) and calculate H = H(M, R, Q).

(b) H # 0 = inertial frame dragging (Lense-Thirring effect)
Calculate the rotation (relative to the background Minkowski inertial frame) of a freely-falling ob-
server sitting at the center of the shell.

Solution to Part (a)

e Slowly rotating = RQ < ¢

e We assume low mass-energy density
= GEM eqns valid
= We can use dust stress tensor (eqn 1.110): TH = putu”

e From the shell, we have p = pod(r — R) = 4]‘7{10;2 5(r — R)

' = (e, V)P where v = RS0 so v, ~ 1
(e, RQYSO (—S¢, Cg, 0))"

= ¢ (1, 256 (=S¢, Co, 0>)u

12

1 —2305¢ B2 80 Cg 0
4 82543 BN282082¢  —(£2)25%0CoS¢ 0
T;Ll/ — iwCQ 5(T_R) C ¢ ( c ) d) ( c ) ¢ QS
mh B2ghcy —(B2)2820CgS¢  (B2)2820C2% 0
0 0 0 0
1 ~B2508¢ £289Ce 0
Mct 5256 0 0 0
- 5 C8(r—R) e 2059
mh B2 50 g 0 0 0
0 0 0 0

Consider the linearized Einstein field equations in the transverse gauge, Equations (7.38)—(7.40):

Goo = 2V20 = g7

= SWGN%(S(T—R)
Goj = —3V'w;+2060;7
= —KTY
Gij = (67 — 0;0;)(® — V) — dodewyy + 26505°T — 0%s;
= KT
=0
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where k = 8GN /c'. The stress tensor T is independent of time, so everything else should be likewise
and time-differentiated terms drop out.

After using separation of variables and the appropriate boundary conditions, we get the solutions for
the potentials:

—GTM, forr < R
o=V = GM

— for r Z R

4%%9% forr < R
wp = 2

4%%9%3/, forr > R

—4%%937, forr < R
w2 2

—4%%9%:16, forr > R
w3 = 0
Sij =0

0 forr < R
G=-Vd - = ’
{ GMy  forr>R

_7-3

Inside the shell,

H = VXW:<—M,M,(BI’LUQ—8Z/IU1)>
A4GMSQ  AGMQY .

<_ 3R 3R )z

8GMS)

= — V/

3R

Outside the shell,

H = Vxw= <—8Zw2,8zw1, (63311)2 — 8yw1)>
B < AGMQR®  4GMQ R? ( AGMOQ 4GMQ>R2+(4GMQR2 , AGMQR? 2)>

R 0T R 5 3R 3R )13 R 5" R 57

R 3 3

B 4GMQR72 zxozy 2 (2% +y?)
B r2’r2’ 3 r2

Solution to Part (b)

2

Inside and at the center of the shell, we have an observer of mass m with energy £ = y,mc” and

momentum p = mv.
% = —F [M-F 2@@’”/0 — <8(J’U)k) — %80hjk> M]
~ 0

7
't _ g

o (‘C’ x H> — (Bobe)v? e — (a(jhk)i - ;aihjk)z%%]
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So the energy E of the particle is essentially constant and we have

d E
P _pP iH-= —pxH
dt me me
Since H is a constant vector in the —z-direction, we see that p is precessing: let p; be the projection of

p on the x-y plane (perpendicular to H) so

dstL = %pi_ xH = Fcentripetal = mrrotw2
2 E E 2
ddg)f - %%XH: <7TLC> (pJ_XH)XH
()
= = pL
mc
Thus, the angular frequency of the circular motion of the observer is
E E 8GMS2
= _|H|l=—2Z"
“ mc |H] mc 3R
mc? + p?/2m 8GM 5, 2\ SGMQ
~ =c(1 ) 18
me 3R C( +vi/e 3R (18)
and since
V]| = MTyotW
we have
v 1 v, mc 3R
Trot = =

mw m E 8GMSQ
v 3R
= 1
me(l+v?/c?) 8GMQ (19)

In obtaining 7,4 and w we have found the rotation (relative to the background Minkowski inertial frame)
of a freely-falling observer sitting at the center of the shell. Note that the rotation is dependent upon the
initial velocity of the observer and there is no rotation if the observer is initially stationary.

9 Further Topics and Resources

Papers

e Brill and Cohen: Rotating Masses and Their Effect on Inertial Frames, Phys. Rev. 143, 1011 - 1015
(1966) [Issue 4 — March 1966]

e Cohen: Gravitational Collapse of Rotating Bodies, Phys. Rev. 173, 1258 - 1263 (1968) [Issue 5 —
September 1968]
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